Cho a, b, c là các số thực thỏa mãn \(a\ge4\); \(b\ge5\); \(c\ge6\) Và \(a^2+b^2+c^2=90\).
Chứng minh: \(a+b+c\ge16\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết: \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{2}{\sqrt{ac}}\Leftrightarrow b^2\le ac\Leftrightarrow\frac{ac}{b^2}\ge1\)
Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b\left(a+c\right)=2ac\Leftrightarrow2ac-bc=ab\Leftrightarrow2a-b=\frac{ab}{c}\)\(\Rightarrow\frac{a+b}{2a-b}=\frac{a+b}{\frac{ab}{c}}=\frac{ac+bc}{ab}=\frac{c}{b}+\frac{c}{a}\)(1)
Tương tự: \(\frac{b+c}{2c-b}=\frac{a}{c}+\frac{a}{b}\)(2)
Cộng từng vế hai đẳng thức (1), (2) và áp dụng Cô - si, ta được: \(\frac{a+b}{2a-b}+\frac{b+c}{2c-b}\ge\frac{c}{b}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}\ge4\sqrt[4]{\frac{ca}{b^2}}\ge4\)
Đẳng thức xảy ra khi a = b = c
Với các số thực dương a, b, c ta có:
\(\frac{2b-c}{a}\ge4\Leftrightarrow2b-c\ge4a\Leftrightarrow b\ge\frac{4a+c}{2}\)
\(\Leftrightarrow b^2\ge\frac{16a^2+8ac+c^2}{4}\Leftrightarrow b^2-4ac\ge\frac{16a^2+c^2}{4}>0\)
=> phương trình \(ãx^2+bx+c=0\) luôn có nghiệm
+) Nếu \(ac\le0\Rightarrow\)Phương trình có nghiệm
+) Nếu ac > 0\(\Rightarrow\)a và c cùng dấu
Từ giả thiết suy ra \(\frac{2b}{a}\ge\frac{c}{a}+4>0\Rightarrow\)a và b cùng dấu
\(\Rightarrow\)a, b, c cùng dấu. Vì thế ta chỉ cần xét a, b và c cùng dương là đủ
Với a, b, c cùng dương ta có :
\(\frac{2b}{a}\ge\frac{c}{a}+4\Leftrightarrow b\ge\frac{c+4a}{2}\Leftrightarrow b^2\ge\frac{c^2+8ac+16a^2}{4}\)
\(\Leftrightarrow b^2-4ac\ge\frac{c^2-8ac+16a^2}{4}=\frac{\left(c-4a\right)^2}{4}\ge0\)
\(\Delta\ge0\)nên phương trình luôn có nghiệm
Vậy phương trình \(ax^2+bx+c=0\)luôn có nghiệm (đpcm)
Với mọi \(0< a< \dfrac{1}{2}\) ta có:
\(\left(\sqrt{2a}-1\right)^2\ge0\Rightarrow2a+1\ge2\sqrt{2a}\)
\(\Rightarrow1\ge2\sqrt{a}\left(\sqrt{2}-\sqrt{a}\right)\)
\(\Rightarrow\dfrac{1}{\sqrt{2}-\sqrt{a}}\ge2\sqrt{a}\)
Do đó:
\(\dfrac{2+\sqrt{2a}}{2-a}=\dfrac{2-a+a+\sqrt{2a}}{2-a}=1+\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{2}\right)}{\left(\sqrt{2}-\sqrt{a}\right)\left(\sqrt{2}+\sqrt{a}\right)}=1+\dfrac{\sqrt{a}}{\sqrt{2}-\sqrt{a}}\ge1+\sqrt{a}.2\sqrt{a}=2a+1\)
Tương tự:
\(\dfrac{2+\sqrt{2b}}{2-b}\ge2b+1\)
Cộng vế:
\(\dfrac{2+\sqrt{2a}}{2-a}+\dfrac{2+\sqrt{2b}}{2-b}\ge2a+1+2b+1=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
cho a;b;c là các số thực dương thảo mãn a+b+c=3.CMR:\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+\sqrt{abc}\ge4\)
Mình ko biết chắc đúng hết không,có gì mong bạn góp ý cho mình nha:
Ta có \(a+b+c=3\)
Áp dụng BĐT Cô-si ta có:
\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow1\ge\sqrt[3]{abc}\)
\(\Leftrightarrow1\ge abc\)
Ta có:\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{\left(abc\right)^2}}=3\sqrt[3]{abc}=3\left(1\right)\)
Ta lại có \(\sqrt{abc}\ge\sqrt{1}=1\left(2\right)\)
Cộng \(\left(1\right)vs\left(2\right)\)lại ta có \(đpcm\)
Dấu \("="\)xảy ra khi \(a=b=c=1\)
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
Từ giả thiết ta suy ra
(a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\(\le\)0
⇔a2+b2+c2−13(a+b+c)+118≤0⇔a2+b2+c2−13(a+b+c)+118≤0
⇔a+b+c≥16
Dấu "=" xảy ra khi a=4,b=5,c=6