Biết các đường thẳng \(y=ax-1;y=1;y=5\) và trục tung cắt nhau tạo thành hình thang có diện tích bằng 8 (đvdt). Vậy a = ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d3//d1 => a=2 (b khác 1)
d3 cắt d2 tại điểm có tung độ bằng 2 Thay y=2 vào d2
=> 2=-x+4=> x=2 Thay y=2; x=2; a=2 vào d3
=> 2+2.2+b=> b=-6
a: Để hai đường thẳng y=-3x+2 và y=ax-2 song song với nhau thì
\(\left\{{}\begin{matrix}a=-3\\2\ne-2\left(đúng\right)\end{matrix}\right.\)
=>a=-3
b: Để hai đường thẳng y=-3x+2 và y=ax-2 cắt nhau thì \(a\ne-3\)
c: Thay x=1 và y=0 vào y=ax-2, ta được:
a*1-2=0
=>a-2=0
=>a=2
Vì (d)//(d') nên a=-4
Vậy: (d): y=-4x+b
Thay x=-1 và y=2 vào (d), ta được:
b+4=2
hay b=-2
a) Vì (d) song song với đường thẳng \(y=-2x+2003\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne2003\end{matrix}\right.\)
\(\Rightarrow\left(d\right):y=-2x+b\)
Vì (d) cắt trục hoành tại điểm có hoành độ = 1
\(\Rightarrow\) tọa độ điểm đó là \(\left(1;0\right)\)
\(\Rightarrow1=b\Rightarrow\left(d\right):y=-2x+1\)
b) pt hoành độ giao điểm: \(-\dfrac{1}{2}x^2=-2x+2\Rightarrow\dfrac{1}{2}x^2-2x+2=0\)
\(\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\Rightarrow y=-\dfrac{1}{2}.2^2=-2\)
\(\Rightarrow\) tọa độ giao điểm là \(\left(2;-2\right)\)
Lời giải:
Gọi $A$ là giao điểm $y=5$ với trục tung
$B$ là giao điểm $y=1$ với trục tung
$C,D$ là giao điểm của $y=ax-1$ với lần lượt $y=1; y=5$
Dễ thấy \(A(0;5)\) \(B(0;1)\)
\(y_C=1=ax_C-1\Rightarrow x_C=\frac{2}{a}\)\(\Rightarrow C(\frac{2}{a}; 1)\)
\(y_D=5=ax_D-1\Rightarrow x_D=\frac{6}{a}\Rightarrow D(\frac{6}{a}; 5)\)
Do đó:
\(AD=\sqrt{(x_A-x_D)^2+(y_A-y_D)^2}=\sqrt{(0-\frac{6}{a})^2+(5-5)^2}=|\frac{6}{a}|\)
\(BC=\sqrt{(x_B-x_C)^2+(y_B-y_C)^2}=\sqrt{(0-\frac{2}{a})^2+(1-1)^2}=|\frac{2}{a}|\)
\(AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}=\sqrt{(0-0)^2+(5-1)^2}=4\)
Do đó:
\(S_{ABCD}=\frac{AB(AD+BC)}{2}=2(|\frac{6}{a}|+|\frac{2}{a}|)=8\)
\(\Leftrightarrow |\frac{8}{a}|=4\Rightarrow a=\pm 2\)
Hình vẽ: