Giải pt
(2- căn3)^x +(7-4căn3)(2+căn3)^x=4 (2- căn3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{7-4\sqrt{3}}{\sqrt{3}-2}-\dfrac{28-10\sqrt{3}}{5-\sqrt{3}}\)
\(=\dfrac{\left(\sqrt{3}-2\right)^2}{\sqrt{3}-2}-\dfrac{\left(5-\sqrt{3}\right)^2}{5-\sqrt{3}}\)
\(=\sqrt{3}-2-5+\sqrt{3}\)
=-7
a)
ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{2x}{x-3}=\dfrac{x^2+11x-6}{x^2-9}\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+11x-6}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(2x^2+6x=x^2+11x-6\)
\(\Leftrightarrow2x^2+6x-x^2-11x+6=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Vậy: S={2}
b) Ta có: \(3x^2+\left(1-\sqrt{3}\right)x+\sqrt{3}-4=0\)
\(\Leftrightarrow3x^2-\left(\sqrt{3}-1\right)x+\sqrt{3}-4=0\)
\(\Leftrightarrow3x^2-\left(\sqrt{3}-1\right)x+\sqrt{3}-1-3=0\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(\sqrt{3}-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-\left(\sqrt{3}-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3-\sqrt{3}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+4-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+4-\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=\sqrt{3}-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{\sqrt{3}-4}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;\dfrac{\sqrt{3}-4}{3}\right\}\)
a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)
b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
a: ĐKXĐ: 2x+5>=0 và 1-x>=0
=>-5/2<=x<=1
PT =>2x+5=1-x
=>3x=-4
=>x=-4/3(nhận)
b: ĐKXĐ: x^2-x>=0 và 3-x>=0
=>x<=3 và (x>=1 hoặc x<=0)
=>x<=0 hoặc (1<=x<=3)
PT =>x^2-x=3-x
=>x^2=3
=>x=căn 3(nhận) hoặc x=-căn 3(nhận)
c: ĐKXĐ: 2x^2-3>=0 và 4x-3>=0
=>x>=3/4 và x^2>=3/2
=>x>=3/4 và \(\left[{}\begin{matrix}x>=\dfrac{\sqrt{6}}{4}\\x< =\dfrac{-\sqrt{6}}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x>=\dfrac{3}{4}\\x< =-\dfrac{\sqrt{6}}{4}\end{matrix}\right.\)
PT =>2x^2-3=4x-3
=>2x^2-4x=0
=>2x(x-2)=0
=>x=0(loại) hoặc x=2(nhận)
\(\sqrt{2x+5}=\sqrt{1-x}\) (ĐK: \(-\dfrac{5}{2}\le x\le1\))
\(\Leftrightarrow2x+5=1-x\)
\(\Leftrightarrow2x+x=1-5\)
\(\Leftrightarrow3x=-4\)
\(\Leftrightarrow x=-\dfrac{4}{3}\left(tm\right)\)
b) \(\sqrt{x^2-x}=\sqrt{3-x}\) (ĐK: \(\left[{}\begin{matrix}1\le x\le3\\x\le0\end{matrix}\right.\))
\(\Leftrightarrow x^2-x=3-x\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt{3}\left(tm\right)\)
c) \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (ĐK: \(x\ge\dfrac{\sqrt{6}}{2}\))
\(\Leftrightarrow2x^2-3=4x-3\)
\(\Leftrightarrow2x^2=4x\)
\(\Leftrightarrow x^2=2x\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)
\(<=>x^2-\sqrt{3}x-\sqrt{5}x+\sqrt{15}=0<=>x\left(x-\sqrt{3}\right)-\sqrt{5}\left(x-\sqrt{3}\right)=0<=>\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)=0\)
<=>Tự làm
\(\left(2-\sqrt{3}\right)^x+\left(7-4\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
Ta có: \(2-\sqrt{3}=\frac{1}{2+\sqrt{3}}\)
\(7-4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
\(\left(2-\sqrt{3}\right)^x+\left(7-4\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
<=> \(\frac{1}{\left(2+\sqrt{3}\right)^x}+\left(2-\sqrt{3}\right)^2\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
<=> \(1+\left(2-\sqrt{3}\right)^2\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x\)
<=> \(1+\left(2-\sqrt{3}\right)^2\left(2+\sqrt{3}\right)^{2x}=4\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x\)
Đặt: \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=t\)
Ta có pt ẩn t: \(1+t^2=4t\)
<=> \(t^2-4t+1=0\Leftrightarrow\orbr{\begin{cases}t=2-\sqrt{3}\\t=2+\sqrt{3}\end{cases}}\)
+) Với \(t=2+\sqrt{3}\), ta có:
\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=2+\sqrt{3}\)
<=> \(\left(2+\sqrt{3}\right)^x=\frac{2+\sqrt{3}}{2-\sqrt{3}}=\left(2+\sqrt{3}\right)^2\)
<=> x=2
Trường hợp còn lại em làm tương tự
bạn ơi khu 7−4√3=(2+√3)2 nó phải là 7−4√3=(2-√3)2 mới đúng chứ?