K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

\(C=\frac{n+2}{2n-1}\)

Do C là nguyên

=> \(n+2⋮2n-1\)

=> \(n+n-\left(n-2\right)⋮2n-1\)

=> \(2n-\left(n-2\right)⋮2n-1\)

=> \(n-2⋮1\)

=> \(n-2\in\left\{\pm1\right\}\)

=> \(\left[{}\begin{matrix}n-2=1=>n=3\\n-2=-1=>n=1\end{matrix}\right.\)

Vậy để C là ngyên thì

\(n\in\left\{3;1\right\}\)

\(D=\frac{2n+1}{3n+1}\)

Do D là nguyên

=> \(2n+1⋮3n+1\)

=> \(2n+n-\left(n-1\right)⋮3n+1\)

=> \(3n-\left(n-1\right)⋮3n+1\)

=> \(n-1⋮1\)

=> \(n-1\in\left\{\pm1\right\}\)

=> \(\left[{}\begin{matrix}n-=1=>n=2\\n-1=-1=>n=0\end{matrix}\right.\)

Vậy để D là nguyên thì

\(n\in\left\{2;0\right\}\)

4 tháng 8 2021

a, bạn sửa lại đề nhé 

b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)

\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

2n + 31-1
2n-2-4
n-1-2 

\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)

\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n - 31-17-7
n4210-4
6 tháng 3 2018

giúp mình nha !

17 tháng 1 2018

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....

15 tháng 12 2016

làm câu

7 tháng 2 2016

Để \(A=\frac{12}{3n-1}\) là số nguyên thì 12 ⋮ 3n - 1 ⇒ 3n -1 ∈ Ư ( 12 ) = { + 1 ; + 2 ; + 3 ; + 6 ; + 12 }

3n - 1- 1  1    - 2   2    - 3  3   - 6  6   - 1212  
3n02- 13- 24- 57- 1113
n02/3- 1/31- 2/34/3- 5/37/3- 11/313/3


Thỏa mãn đề bài n { 0; 1 }

Các ý khác làm tương tự
 

 

7 tháng 2 2016

Để D là phân số nguyên thì 6n-3/3n+1 phải là 1 số nguyên

Ta có 6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1 - 5/3n+1=2+ 5/3n+1

Để D có GT nguyên thì 5/3n+1 có GT nguyên hay 5 chia hết cho 3n+1

=> 3n+1 thuộc Ước của 5

=> 3n+1 thuộc {-5;-1;1;5}

=> n thuộc {-2;-2/3;0;4/3}

23 tháng 3 2018

a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)

 <=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)

<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)

c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)

<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

20 tháng 12 2021

cục cức chấm mắm

23 tháng 6 2021

`a in ZZ`

`=>6n-4 vdots 2n+1`

`=>3(2n+1)-7 vdots 2n+1`

`=>7 vdots 2n+1`

`=>2n+1 in Ư(7)={+-1,+-7}`

`=>2n in {0,-2,6,-8}`

`=>n in {0,-1,3,-4}`

`b in ZZ`

`=>3n+2 vdots 4n-4`

`=>12n+8 vdots 4n-4`

`=>3(4n-4)+20 vdots 4n-4`

`=>20 vdots 4n-4`

`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`

`=>4n-4 in {+-4,+-20}`

`=>n-1 in {+-1,+-5}`

`=>n in {0,2,6,-4}`

`c in ZZ`

`=>4n-1 vdots 3-2n`

`=>2(3-2n)-7 vdots 3-2n`

`=>7 vdots 3-2n`

`=>3-2n in Ư(7)={+-1,+-7}`

`=>2n in {4,0,-4,10}`

`=>n in {2,0,-2,5}`

23 tháng 6 2021

a) đk: \(n\ne\dfrac{-1}{2}\)

Để \(\dfrac{6n-4}{2n+1}\) nguyên

<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên

<=> \(3-\dfrac{7}{2n+1}\) nguyên

<=> \(7⋮2n+1\)

Ta có bảng 

2n+11-17-7
n0-13-4
 tmtmtmtm

 

b)đk: \(n\ne1\)

Để \(\dfrac{3n+2}{4n-4}\) nguyên

=> \(\dfrac{3n+2}{n-1}\) nguyên

<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên

<=> \(3+\dfrac{5}{n-1}\) nguyên

<=> \(5⋮n-1\)

Ta có bảng: 

n-11-15-5
n206-4
Thử lạitmloạitm

loại

 

c) đk: \(n\ne\dfrac{3}{2}\)

Để \(\dfrac{4n-1}{3-2n}\) nguyên

<=> \(\dfrac{4n-1}{2n-3}\) nguyên

<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên

<=> \(2+\dfrac{5}{2n-3}\) nguyên

<=> \(5⋮2n-3\)

Ta có bảng: 

2n-31-15-5
n214-1
 tmtmtmtm

 

d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)

\(\Leftrightarrow1⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2n\in\left\{0;-2\right\}\)

hay \(n\in\left\{0;-1\right\}\)

Mk trả lời mỗi câu khó nha!!!

d*) \(\dfrac{n+1}{2n+1}\in Z\) 

Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\) 

\(n+1⋮2n+1\) 

\(\Rightarrow2.\left(n+1\right)⋮2n+1\) 

\(\Rightarrow2n+2⋮2n+1\) 

\(\Rightarrow2n+1+1⋮2n+1\) 

\(\Rightarrow1⋮2n+1\) 

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

2n+1-11
n-10

Vậy \(n\in\left\{-1;0\right\}\)

a: Để A là số nguyên thì \(4n^2-1+6⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

b: Để B là số nguyên thì \(3n^2+6n-7n-14+15⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

hay \(n\in\left\{-1;-3;1;-5;3;-7;13;-17\right\}\)