K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

a) \(f\left(x\right)\ge0\)với \(-1,5\le x\le0\)

b) \(f\left(x\right)< 0\)với \(-2\le x< -1,5\)hoặc \(0< x\le2\)

2 x -3 -2 A -2 C -1 1 2 3 1 y B 0 -1

4 tháng 12 2018

 

Trên đoạn [0;9] có f '(x) ⇔ x=0;x=;x=6

Bảng biến thiên :

 

Suy ra 

Quan sát các diện tích hình phẳng  có :

Suy ra

Chọn đáp án D.

 

 

18 tháng 8 2019

Chọn đáp án C.

16 tháng 6 2019

Đáp án D

9 tháng 9 2018

Chọn A

Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau

Nhận thấy

Để tìm  ta so sánh f(-1) và f(2)

Theo giả thiết, 

Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0 


18 tháng 4 2019

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

13 tháng 4 2017

7 tháng 7 2018

\

26 tháng 6 2017

Chọn A

+ Từ đồ thị của đạo hàm  ta lập được bảng biến thiên như sau

+ Dựa vào BBT ta suy ra giá trị lớn nhất của hàm số trên đoạn [-1;3] là f(0)

31 tháng 8 2019

Chọn B

Ta có:

biến thiên của hàm số f(x) trên đoạn [0;4]

Nhìn vào bảng biến thiên ta thấy 

Ta có f(2) + f(4) = f(3) + f(0)  ⇔ f(0) - f(4) = f(2) - f(3) > 0.

Suy ra: f(4) < f(0). Do đó 

Vậy giá trị nhỏ nhất và lớn nhất của f(x) trên đoạn [0;4] lần lượt là: f(4), f(2).