Tính:
\(A=\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+...+\frac{10301}{100.103}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+....+\frac{10301}{100.103}\) (có 34 số hạng)
A = \(\frac{4+1}{1.4}+\frac{4.7+1}{4.7}+\frac{7.10+1}{7.10}+....+\frac{100.103+1}{103.100}\)
A = \(1+\frac{1}{1.4}+1+\frac{1}{4.7}+1+\frac{1}{7.10}+....+1+\frac{1}{100.103}\)
A = \(1.34+\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
A = \(34+\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
A = \(34+\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
A = \(34+\frac{1}{3}\cdot\frac{102}{103}\)
A = \(34+\frac{34}{103}=\frac{3536}{103}\)
\(A=\frac{2}{4.9}+\frac{2}{9.14}+\frac{2}{14.19}+...+\frac{2}{504.509}\)
\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)=...\)
\(B=\frac{1.4+1}{1.4}+\frac{4.7+1}{4.7}+\frac{7.10+1}{7.10}+...+\frac{100.103+1}{100.103}\)
\(B=1+\frac{1}{1.4}+1+\frac{1}{4.7}+...+1+\frac{1}{100.103}\)
\(B=34+\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=34+\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=34+\frac{1}{3}\left(1-\frac{1}{103}\right)=...\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{103}\right)\)
\(=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(\frac{x}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{100.103}=\frac{102}{103}\)
\(\Leftrightarrow\frac{x-1}{1.4}+\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\right)=\frac{102}{103}\)
\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{306}{103}\)
\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\frac{102}{103}=\frac{306}{103}\)
\(\Leftrightarrow\frac{3}{4}\left(x-1\right)=\frac{204}{103}\)
\(\Leftrightarrow x-1=\frac{272}{103}\)
\(\Leftrightarrow x=\frac{375}{103}\)
=> 3x/4+3/4.7+3/7.10+...+3/100.103=306/103(nhân cả 2 vế của đt lên 2)
=>3x/4+(1/4-1/7)+(1/7-1/10)+...+(1/100-1/103)=306/103
=>3x/4+1/4-1/103+=306/103
=>3x/4+99/412=306/103
=>3x/4=306/103-99/412=1125/412
=>x=1125/412:3/4
=>x=1125/309
( nếu thấy đúng thì tick cho mk nha
\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\frac{102}{103}\)
\(B=\frac{34}{103}\)
Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)
\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)
s=(1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103)+(1/103-1/104+1/104-1/105+1/105-1/106+1/106-1/107)
=(1-1/103)+(1/103-1/107)
=1 - 1/107
=106/107
Võ Thiện Tuấn viết tổng quát kết quả hay phép đề bài hả bạn ?
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7} +....+\frac{1}{100}-\frac{1}{103}\)
\(=1-\frac{1}{103}\)
\(=\frac{102}{103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+................+\frac{5}{100.103}\)
\(\frac{1}{3}.\left(5-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+..............+\frac{5}{100}-\frac{5}{103}\right)\)
\(\frac{1}{3}.\left(5-\frac{5}{103}\right)\)
\(\frac{1}{3}.\left(\frac{510}{103}\right)=\frac{170}{103}\)
\(=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{....}{....}\)