K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Với x=2018 thì  2019=x+1

\(\Rightarrow A=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(\Rightarrow A=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(\Rightarrow A=1\)

Ta có: x=2018

nên x+1=2019

Ta có: \(A=x^5-2019x^4+2019x^3-2019x^2+2019x-2020\)

\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2020\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)

\(=x-2020=2019-2020=-1\)

28 tháng 12 2019

ta có: x = 2018 => 2019 = x + 1. Do đó:

\(C=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-1.\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-1.\)

\(=x-1=2019-1=2018\)

Vậy C = 2018 với x = 2018.

Học tốt nhé ^3^

28 tháng 12 2019

\(Ta \)  \(có :\)

\(x = 2018\)\(\Leftrightarrow\)\(x + 1 = 2019\)

\(Thay \)  \(x + 1 = 2019\)\(vào \)  \(C , ta \)  \(được :\)

\(C = x\)\(15\)\(- ( x + 1 ).x\)\(14\)\(+ ( x + 1 ).x\)\(13\) \(- ( x + 1 ).x\)\(12\) \(+ ...+ ( x + 1 ).x - 1\)

\(C = x\)\(15\)\(- x\)\(15\)\(- x\)\(14\) \(+ x\)\(14\) \(+ x\)\(13\)\(- x\)\(13\)\(- x\)\(12\)\(+ ... + x^2 + x - 1\)

\(C = x - 1\)

\(Thay \)  \(x = 2018\)  \(vào \)  \(C\) \(, ta \)  \(được :\)

\(C = 2018 - 1 = 2017\)

4 tháng 5 2020

X bằng 1 hoặc 0 cũng được

4 tháng 5 2020

c) Ta có: M < 4  => 13,8 : ( 5,6 - x ) < 4

                          => 5,6 - x < 13,8:4

                               5,6 - x < 3,45

                                       x < 5,6 - 3,45

                                       x < 2,15

Vậy x < 2,15

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:

Vì $x=9$ nên $x-9=0$
Ta có:

$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$

$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$

$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$

$=x-10=9-10=-1$

DD
18 tháng 1 2021

Không biết bạn có gõ đề sai ở đâu không nhỉ? Vì biểu thức nhìn không biết quy luật là như thế nào. 

18 tháng 1 2021

Dạ ko bạn, đề này mình tìm từ tư liệu trong sách

16 tháng 1 2022

\(A=\left(x-3\right)^2+\left(x+1\right)^2\)

\(\Rightarrow A=x^2-6x+9+x^2+2x+1\)

\(\Rightarrow A=2x^2-4x+10\)

\(\Rightarrow A=2\left(x^2-2x+5\right)\)

\(\Rightarrow A=2\left[\left(x^2-2x+1\right)+4\right]\)

\(\Rightarrow A=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow A=2\left(x-1\right)^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(A_{min}=8\Leftrightarrow x=1\)

\(\text{A= 73 - (35 + 1𝑎) : 23}\)

thay \(a=45\) vào biểu thức ta có:

\(A=73-\left(35+45\right):23\)

\(=73-\frac{80}{23}=\frac{1599}{23}\)

b)\(73-\left(35+1a\right):23=1715\)

\(\left(35+1a\right):23=-1642\)

\(35+a=-37766\)

\(a=-37801\)

13 tháng 3 2022

mình ko hiểu đc câu trả lời của bạn 

mình sorry nhé