K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Với x=2018 thì  2019=x+1

\(\Rightarrow A=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(\Rightarrow A=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(\Rightarrow A=1\)

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:

Vì $x=9$ nên $x-9=0$
Ta có:

$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$

$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$

$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$

$=x-10=9-10=-1$

16 tháng 7 2021

\(A=x^2+x+1=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

16 tháng 7 2021

A= x2 + x + 1

A = x2 + 2. \(\dfrac{1}{2}\). x + (\(\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\)

A = ( x + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\)

Vậy, x2 + x + 1>0 với mọi x

Đúng thì like giúp mik nha. Thx bạn

NV
25 tháng 12 2020

\(A=\dfrac{xyz.x}{xy+xyz.x+xyz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{xyz+yz+y}\)

\(=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{xyz}{y+xyz+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{2019}{y+2019+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{yz+y+2019}{yz+y+2019}=1\)

3 tháng 7 2019

a)999x1001=(1000-1)(1000+1)=10002-12=1000000-1=999999

b)bạn viết đúng đề câu b k thế?

1 tháng 5 2021

https://olm.vn/hoi-dap/detail/740021926146.html?auto=1

14 tháng 7 2016

thay x = 1; y = 2 vào biểu thức: 7x (a + 2) - y (a + x) - xa (a + x + y)

đc: 7 (a + 2) - 2 (a + 1) - a (a + 1 + 2)

đặt a + 1 = t có:

7 (t + 1) - 2t - a (t + 2) = 7t + 7 - 2t - at - 2a = (7 - 2- a)t + 7  - 2a= (5 - a)t + 7 - 2a

thay vào đc: (5 - a) (a + 1) + 7 - 2a = 5a + 5 - a2 - a + 7 - 2a = 2a + 12 - a2 

vậy giá trị biểu thức trên là: 2a +12 - a2

27 tháng 11 2018

\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)

\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)

\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)

\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)

\(=\frac{3a^2-b^2}{b^2}\)

\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)

29 tháng 12 2016

\(P=\frac{8x+12}{x^2+4}=\frac{4x^2+16-4x^2+8x-4}{x^2+4}\)

\(=4-\frac{\left(2x-2\right)^2}{x^2+4}\le4\)

Vậy GTLN là 4

28 tháng 12 2016

GTLN của P là 4

2 tháng 5 2016

Bạn biến đổi cuối cùng bằng :A=(sin2\(\alpha\)+\(\cos^2\alpha\))2=12=1

a) ĐKXĐ: \(x\notin\left\{-3;2\right\}\)

b) Ta có: \(P=\dfrac{x^3+2x^2-5x-6}{x^2+x-6}\)

\(=\dfrac{x^3+3x^2-x^2-3x-2x-6}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2\left(x+3\right)-x\left(x+3\right)-2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{\left(x+3\right)\left(x^2-x-2\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{\left(x-2\right)\left(x+1\right)}{x-2}=x+1\)

Với mọi x nguyên thỏa ĐKXĐ, ta luôn có: x+1 là số nguyên

hay P là số nguyên(đpcm)