Cho đường tròn (C): \(x^2+y^2+6x-2y+5=0\)và điểm A(-4;2). Đường thẳng d qua A cắt (c) tại 2 điểm M, N sao cho A là trung điểm của MN. Phương trình đường thẳng d là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT đường tròn (x - 3)2 + (y + 1)2 = 4
Vậy đường tròn (C) có tâm I (3 ; -1) và bán kính bằng 2
\(\overrightarrow{IA}=\left(-2;0\right)\)⇒ IA = 2 ⇒ A thuộc đường tròn
\(\overrightarrow{IB}=\left(-2;4\right)\) ⇒ IB > 2 ⇒ B nằm ngoài đường tròn
a) \(\left(C\right)\) có tâm \(I\left(3;-1\right)\) và có bán kính \(R=2\), ta có :
\(IA=\sqrt{\left(3-1\right)^2+\left(-1-3\right)^2}=2\sqrt{5}\)
\(IA>R\), vậy A nằm ngoài (C)
b) \(\Delta_1:3x+4y-15=0;\Delta_2:x-1=0\)
a) Đường tròn \({(x + 1)^2} + {(y - 5)^2} = 9\) có tâm \(I\left( { - 1;5} \right)\) và \(R = 3\)
b) Đường tròn \({x^2} + {y^2}-6x - 2y-{\rm{1}}5 = 0\) có tâm \(I\left( {3;1} \right)\) và \(R = \sqrt {{3^2} + {1^2} + 15} = 5\)
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
1.
Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)
2.
\(\overrightarrow{MI}=\left(1;-2\right)\)
Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt
Phương trình:
\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)
\(\overrightarrow{AN}=-\dfrac{1}{2}\overrightarrow{AM}\Rightarrow V_{\left(A;-\dfrac{1}{2}\right)}\left(C\right)=\left(C'\right)\)
Đường tròn (C) tâm (3;-4)
\(\Rightarrow\) Tọa độ tâm (C'):
\(\left\{{}\begin{matrix}x'=-\dfrac{1}{2}\left(3-5\right)+5=6\\y'=-\dfrac{1}{2}\left(-4-\left(-6\right)\right)+\left(-6\right)=-7\end{matrix}\right.\) \(\Rightarrow\left(6;-7\right)\)
a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)
Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4 = 2\)
b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = - 2,c = 2\)
Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)
c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b = - 1,c = 7\)
Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 = - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.
d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.
Đường tròn tâm \(I\left(-3;1\right)\) bán kính \(R=\sqrt{5}\)
\(\overrightarrow{AI}=\left(1;-1\right)\)
Theo t/c đường tròn, do A là trung điểm MN \(\Rightarrow IA\perp MN\Rightarrow IA\perp d\)
\(\Rightarrow d\) nhận \(\overrightarrow{AI}\) là 1 vtpt
Phương trình d: \(1\left(x+4\right)-1\left(y-2\right)=0\Leftrightarrow x-y+6=0\)