Vẽ tam giác ABC trên mặt phẳng tọa độ biết A(1;2) ; B(-1;0) và C(2;0). Tính SABC ( theo đơn vị đo trên mỗi trục tọa độ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(2-2\right)^2+\left(4+1\right)^2}=5\)
Độ dài đoạn thẳng AC là:
\(AC=\sqrt{\left(2+4\right)^2+\left(4+1\right)^2}=\sqrt{61}\)
Độ dài đoạn thẳng BC là:
\(BC=\sqrt{\left(2+4\right)^2+\left(-1+1\right)^2}=6\)
Ta có: \(BA^2+BC^2=5^2+6^2=25+36=61\)
\(AC^2=\left(\sqrt{61}\right)^2=61\)
Do đó: \(AC^2=BA^2+BC^2\)(=61)
Xét ΔABC có \(AC^2=BA^2+BC^2\)(cmt)
nên ΔABC vuông tại B(Định lí Pytago đảo)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{BA\cdot BC}{2}=\dfrac{5\cdot6}{2}=\dfrac{30}{2}=15\left(cm^2\right)\)
a) hình tự vẽ
b)theo hình vẽ tam giác ABC là tam giác vuông ở B
ta có AB=5,BC=6=>\(SABC=\frac{AB.BC}{2}=\frac{30}{2}=15\)(đơn vị diện tích)
a: \(AB=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-1-2\right)^2}=5\)
\(BC=\sqrt{\left(5-2\right)^2+\left(3+1\right)^2}=5\)
Do đó: AB=BC
hay ΔABC cân tại B
Ta có:
BC = BO + OC = \(|-1|+|2|=3\)
=> SABC = \(\frac{1}{2}BC.AH=\frac{1}{2}.3.2=6\)\(\left(đvdt\right)\)