\(\left(x+y+z\right)^3=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
\(P=\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{-x^3\left(y-z\right)-y^3\left(z-x\right)-z^3\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{-x^3y+x^3z-y^3z+y^3x-z^3x+z^3y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(x-y\right)\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=x+y+z=2008\)
Làm như vầy là sai hướng rồi.
Tham khảo :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)
\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)
\(=\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]\)
\(=\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]\)
\(=3\left(y+z\right)\left[\left(x^2+xy\right)+\left(yz+xz\right)\right]\)
\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(\left(x+y+z\right)^3=x^3.y^3.z^3\)
k cho mik nha
\(\left(x+y+z\right)^3=\left(x+y\right)^3+z^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)\)
\(=x^3+y^3+z^3+3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)