Cho \(\frac{a^2+b^2}{c^2+d^2}\) với a,b,c,d \(\ne\)0, \(c\ne\pm d\).CMR hoặc \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{d}=\frac{b}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết, ta có \(cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\Leftrightarrow a^2cd+b^2cd-abc^2-abd^2=0\)
<=>\(\left(a^2cd-abc^2\right)+\left(b^2cd-abd^2\right)=0\Leftrightarrow ac\left(ad-bc\right)+bd\left(bc-ad\right)=0\)
<=>\(ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
<=>\(\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}\left(ĐPCM\right)}}\)
^_^
Ta có\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
<=> cd(a2 + b2) = ab(c2 + d2)
<=> a2cd + b2cd - abc2 - abd2 = 0
<=> (a2cd - abc2) + (b2cd - abd2) = 0
<=> ac(ad - bc) + bd(bc - ad) = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{d}=\frac{b}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\left(\text{đpcm}\right)\)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)\cdot cd=\left(c^2+d^2\right)\cdot ab\)
\(\Rightarrow a^2\cdot cd+b^2\cdot cd=c^2\cdot ab+d^2\cdot ab\)
\(\Rightarrow a^2\cdot cd+b^2\cdot cd-c^2\cdot ab-d^2\cdot ab=0\)
\(\Rightarrow\left(a^2\cdot cd-c^2\cdot ab\right)+\left(b^2\cdot cd-d^2\cdot ab\right)=0\)
\(\Rightarrow ac\cdot\left(ad-bc\right)+bd\cdot\left(bc-ad\right)=0\)
\(\Rightarrow ac\cdot\left(ad-bc\right)-bd\cdot\left(ad-bc\right)=0\)
\(\Rightarrow\left(ac-bd\right)\cdot\left(ad-bc\right)=0\)
Tự làm tiếp nhé.......
thiếu đề kìa M phải bằng 1 giá trị nào đó thì mới có phép chứng minh kia kìa bạn
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
Nếu \(a+b+c+d\ne0.\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
Nếu \(a+b+c+d=0\) thì hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
Ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2-2ab+b^2}{c^2-2cd+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(2\right)\)
Từ điều (1) và (2)
\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow c\left(a+b\right)-d\left(a+b\right)=c\left(a-b\right)+d\left(a-b\right)\)
\(\Rightarrow ac+bc-ad-bd=ac-bc+ad-bd\)
\(\Rightarrow bc-ad=-bc+ad\)
\(\Rightarrow2bc=2ad\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\left[\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{b}{a}=\frac{d}{c}\end{matrix}\right.\) ( đpcm )
đề sai phải là CMR \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{b}{a}=\frac{d}{c}\)
thiếu đề
phải không
sửa lại mới làm được
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) ms đúng đề nhé!
Câu hỏi của Học Online 24h - Toán lớp 7 - Học toán với OnlineMath