So sánh x và y bằng cách nhanh nhất :
\(x=\frac{1989}{1990};y=\frac{2011}{2012}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có : \(x=\frac{-9}{8}=-\frac{9}{8}\)
\(y=\frac{-49}{50}=-\frac{49}{50}\)
Vì x có 9 > 8 ( tử số lớn hơn mẫu số ) và y có 49 < 50 ( tử số bé hơn mẫu số )
\(x>y \left(\frac{-9}{8}>\frac{-49}{50}\right)\)
Bài làm
Ta có: \(x=-\frac{9}{8}>1\)
\(y=-\frac{49}{50}< 1\)
Mà hai phân số này là số nguyên âm
=>\(x=-\frac{9}{8}>y=-\frac{49}{50}\)
Hay \(x>y\)
# Học tốt #
Ta thấy :
\(\frac{-9}{8}=\left(-1\right)\cdot\frac{9}{8}\)
\(\frac{-49}{50}=\left(-1\right)\cdot\frac{49}{50}\)
Vì \(\frac{9}{8}>\frac{49}{50}\)( \(\frac{9}{8}\)là phân số lớn hơn 1 )
Nhưng số âm thì các lớn các nhỏ
\(\frac{-9}{8}< \frac{-49}{50}\)
Vậy x < y
\(\text{Ta thấy : }267<268\Rightarrow\frac{267}{268}<1\)
\(1347>1343\Rightarrow\frac{1347}{1343}>1\)
\(\Rightarrow\frac{267}{268}<\frac{1347}{1343}\Rightarrow-\left(\frac{267}{268}\right)>-\left(\frac{1347}{1343}\right)\)
\(\text{Hay }\frac{267}{-268}>\frac{-1347}{1343}\)
267 < 268 => -267/268 > - 1
1347 > 1343 => -1347 /1343 < -1
Vậy 267/-268 > -1347/1343
Ta có :
1 - 2008/2009 = 2009/2009 - 2008/2009 = 1/2009
1 - 1995/1996 = 1996/1996 - 1995/1996 = 1/1996
Vì 1/2009 < 1/1996 => 2008/2009 > 1995/1996
Ta có: 1/3 = 13/39
=> 13/38 > 13/39 = 1/3
1/3 = 29/87
=> 29/88 <29/87=1/3
Vì 13/38 >1/3 > 29/88 nên -13/38 < -1/3 < -29/88
Vậy -13/38 < -29/88
b)Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
Ta có:
\(x=\frac{1989}{1990}=1-\frac{1}{1990}\)
\(y=\frac{2011}{2012}=1-\frac{1}{2012}\)
Do \(\frac{1}{1990}>\frac{1}{2012}\)=> \(-\frac{1}{1990}< -\frac{1}{2012}\) => \(1-\frac{1}{1990}< 1-\frac{1}{2012}\)
=> \(x=\frac{1989}{1990}< y=\frac{2010}{2012}\)
Ta có :
x = \(\frac{1989}{1990}\)= 1 - \(\frac{1}{1990}\)
y = \(\frac{2011}{2012}\)= 1 - \(\frac{1}{2012}\)
Do \(\frac{1}{1990}\)> \(\frac{1}{2012}\)=> \(-\)\(\frac{1}{1990}\)< \(-\)\(\frac{1}{2012}\)=> \(1\)\(-\)\(\frac{1}{1990}\)\(< 1-\)\(\frac{1}{2012}\)
=> \(x\)\(=\)\(\frac{1989}{1990}\)\(< y=\)\(\frac{2010}{2012}\)