Cho A,B nguyên .Chứng minh rằng số \(99999+11111\sqrt{3}\)không thể biểu diễn dưới dạng
\(\left(A+B\sqrt{3}\right)^2\)
help me! mai mình phải ik học
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(a+b\sqrt{3}\right)^2=a^2+2ab\sqrt{3}+3b^2\)
Gỉa sử số \(99999+11111\sqrt{3}\) có thể biểu diễn dưới dạng : \(\left(a+b\sqrt{3}\right)^2\) thì :
\(\left\{{}\begin{matrix}a^2+3b^2=99999\\2ab\sqrt{3}=11111\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a^2+3b^2=99999\\2ab=11111\circledast\end{matrix}\right.\)
Do : \(ab\in Z\Rightarrow2ab\ne11111\Leftrightarrow\circledast\) không thể xảy ra .
Vậy , ....
G/s \(2015+2014\sqrt{3}=\left(a+b\sqrt{3}\right)^2=a^2+3b^2+2\sqrt{3}ab\)
\(2014\sqrt{3}-2\sqrt{3}ab=a^2+3b^2-2015\)
\(\sqrt{3}\left(2014-2ab\right)=a^2+3b^2-2015\)
\(\sqrt{3}=\frac{a^2+3b^2-2015}{2014-2ab}\)
Với a; b nguyên =>VP nguyên
mà VT là số vô tỉ
=> g/s sai
Vây
\(\begin{array}{l}{(3 + \sqrt 2 )^5} - {(3 - \sqrt 2 )^5}\\ = {3^5} + {5.3^4}.\sqrt 2 + {10.3^3}{\left( {\sqrt 2 } \right)^2} + {10.3^2}{\left( {\sqrt 2 } \right)^3} + 5.3{\left( {\sqrt 2 } \right)^4} + {\sqrt 2 ^5}\\ - \left[ {{3^5} - {{5.3}^4}.\sqrt 2 + {{10.3}^3}{{\left( {\sqrt 2 } \right)}^2} - {{10.3}^2}{{\left( {\sqrt 2 } \right)}^3} + 5.3{{\left( {\sqrt 2 } \right)}^4} - {{\sqrt 2 }^5}} \right]\\ = 2\left( {{{5.3}^4}.\sqrt 2 + {{10.3}^2}{{\left( {\sqrt 2 } \right)}^3} + {{\sqrt 2 }^5}} \right)\\ = 810\sqrt 2 + 360\sqrt 2 + 8\sqrt 2 \\ = 1178\sqrt 2 \end{array}\)
a: \(r_6=3^{\text{1 , 414213 }}=4,7288\text{01466}\)
\(r_7=3^{\text{ 1 , 4142134}}=\text{4,728803544}\)
b: Khi \(n\rightarrow+\infty\) thì \(3^{r_n}\rightarrow3^{\sqrt{2}}\)
Giả sử tồn tại \(A,B\inℤ\)để có đẳng thức \(99999+11111\sqrt{3}=\left(A+B\sqrt{3}\right)^2\)
Suy ra \(99999+11111\sqrt{3}=A^2+3B^2+2\sqrt{3}AB\)
\(\Leftrightarrow2\sqrt{3}AB-11111\sqrt{3}=99999-A^2-3B^2\)
\(\Leftrightarrow\sqrt{3}\left(2AB-11111\right)=99999-A^2-3B^2\)
\(\Leftrightarrow\sqrt{3}=\frac{99999-A^2-3B^2}{2AB-11111}\)
Dễ thấy Vế trái là một số vô tỉ; Vế phải là một số hữu tỉ => Vô lí
Vậy số \(99999+11111\sqrt{3}\)không thể biểu diễn dưới dạng \(\left(A+B\sqrt{3}\right)^2.\)