K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

biến đổi P trở thành:P=∣∣√x2−4x+5−√x2+6x+13∣∣=∣∣∣√(x−2)2+1−√(x+3)2+4∣∣∣≤∣∣√26∣∣=√26P=|x2−4x+5−x2+6x+13|=|(x−2)2+1−(x+3)2+4|≤|26|=26

vậyMaxP=√26;"="⇔2x−4=x+3⇔x=7

P/s: ở đây mình đã sử dụng BDT:

√a2+b2−√c2+d2≤√(a+c)2−(b+d)2

9 tháng 6 2019

\(A^2=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

\(\Leftrightarrow\left|A\right|\ge1\Leftrightarrow A\ge1\left(vìA>0\right)\)

Dấu " = " xảy ra <=> x=2

1 tháng 9 2021

Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)

          \(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)

    \(\Rightarrow\)   \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)

Vậy GTNN của biểu thức là 4

2 tháng 9 2021

 

thế cho mik hỏi dấu = xảy ra khi nào?

sai nha bạn ơi

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

5 tháng 6 2019

\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}=1\)( vì ( x + 2 )2 \(\ge\)0 )

vậy GTNN của biểu thức là 1 \(\Leftrightarrow x=-2\)

\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x-2\right)^2+1}\)\(\ge\sqrt{1}=1\)(Vì \(\left(x+2\right)^2\)\(\ge0\))

Vậy giá trị nhỏ nhất của biểu thức là 1 khi \(x=-2\)

\(MinA=0\Leftrightarrow7+4x-4x^2=0\Leftrightarrow x=\dfrac{1\pm2\sqrt{2}}{2}\)

2 tháng 11 2023

bạn giải thích đc ko mik chx hiểu lắm

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1