Rút Gọn
B=y/2 + 3/4√1-4y+4y^2 - 3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)
\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)
=1/2y+3/4-3/2y-3/2
=-y-3/4
Bài 1:
a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)
\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)
b.
\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)
Bài 2:
\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)
\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)
\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)
\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)
\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)
a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)
\(=-4.\dfrac{1}{4}+10=9\)
b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)
\(=\left(-2\right).\left(32-32\right)=0\)
a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)
\(=4x^2-4x+1+9-4x^2\)
\(=-4x+10\)
\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)
a: \(\left(3x+4y\right)\left(9x^2-12y+16y^2\right)\)
\(=27x^3-36xy+48xy^2+36x^2y-48y^2+64y^3\)
b: \(\left(x+3\right)^3-\left(3x-1\right)^2\)
\(=x^3+9x^2+27x+27-\left(9x^2-6x+1\right)\)
\(=x^3+9x^2+27x+27-9x^2+6x-1\)
\(=x^3+33x+26\)
`#3107.101107`
`1.`
`a,`
`(3x + 4y)(9x^2 - 12xy + 16y^2)?`
`= (3x)^3 + (4y)^3`
`= 27x^3 + 64y^3`
`b,`
`(x + 3)^3 - (3x - 1)^2`
`= x^3 + 9x^2 + 27x + 27 - (9x^2 - 6x + 1)`
`= x^3 + 9x^2 + 27x + 27 - 9x^2 + 6x - 1`
`= x^3 + 33x + 26`
_____
Sử dụng HĐT:
`A^3 + B^3 = (A + B)(A^2 + AB + B^2)`
`(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`
`(A - B)^2 = A^2 - 2AB + B^2.`
a) \(3x^2-2x\left(5+1,5x\right)+10x\)
\(=3x^2-10x-3x^2+10x=0\)
b) \(7x\left(4y-x\right)+4y\left(y-7x\right)-2\left(2y^2-3,5x\right)\)
\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)
\(=-7x^2+7x\)
\(A=\left(x-4y\right)\left(x+4y\right)+16y^2=x^2+4xy-4xy-16y^2+16y^2=x^2\)
Thay x = 2 ta có : \(2^2=4\)
\(B=\left(x+3y^2\right)\left(x-3y^2\right)-x^2+2=x^2-3xy^2+3xy^2-9y^4-x^2+2=-9y^4+2\)
Thay y = -1 ta có : \(-9.\left(-1\right)^4+2=-7\)
\(C=\left(x-3\right)\left(x^2+2x-5\right)-x^3+x^2=x^3+2x^2-5x-3x^2-6x+15-x^3+x^2\)
\(=-11x+15\)Thay x = 3 ta có : \(-11.3+15=-33+15=-18\)