Chứng minh:
ac đồng dư với bc theo mod cm
ƯCLN(c;m) = 1
=> a đồng dư với b theo mod m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta DCH,\Delta CBA\) có : \(\left\{{}\begin{matrix}\hat{CDH}=\hat{ACB}=90^o\left(gt\right)\\\hat{DCH}=\hat{CBA}\left(\text{cùng phụ với góc A}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DCH\sim\Delta CBA\left(g.g\right)\) (đpcm).
\(\Rightarrow\dfrac{DH}{AC}=\dfrac{CD}{BC}\)
Ta cũng có : \(BD\) là phân giác nên : \(\dfrac{AD}{CD}=\dfrac{AB}{BC}\Leftrightarrow\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
Suy ra : \(\dfrac{DH}{AC}=\dfrac{AD}{AB}\Rightarrow AD.AC=DH.AB\) (đpcm).
a)Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\)
chung \(\widehat{BCA}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Leftrightarrow AH\times BC=AB\times AC\left(đpcm\right)\)