Cho đường thẳng (d): y=mx-m+1 và parabol (P); y=x2
a, chứng minh (d) và (P) luôn có điểm chung với mọi m. Với giá trị nào của m thì (d) và (P) tiếp xúc với nhau? khi đó tìm tọa tọa độ của tiếp điểm
b, Gọi x1,x2 là hoành độ các giao điểm của (d) và (P). Tìm GTLN và GTNN của biểu thức \(A=\frac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}\)
Phương trình hoành độ giao điểm: \(x^2-mx+m-1=0\)
Do \(a+b+c=0\Rightarrow\) pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
Hay d luôn có điểm chung với (P)
Để d và (P) tiếp xúc nhau \(\Leftrightarrow\) pt có nghiệm kép
\(\Rightarrow x_1=x_2\Rightarrow m-1=1\Rightarrow m=2\)
\(A=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}\)
\(\Leftrightarrow A.m^2-2m+2A-1=0\)
\(\Delta'=1-A\left(2A-1\right)=-2A^2+A+1\ge0\Rightarrow-\frac{1}{2}\le A\le1\)
\(\Rightarrow A_{max}=1\) khi \(m=1\)
\(A_{min}=-\frac{1}{2}\) khi \(m=-2\)