Cho \(0< a\le b\le c\). Chứng minh:
\(\frac{2a^2}{b+c}+\frac{2b^2}{c+a}+\frac{2c^2}{a+b}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có \(0\le a\le b\le c\) nên b\(+\)c \(\ge\)2b
Do đó suy ra \(\frac{2a^2}{b+c}\le\frac{2a^2}{2b}\)suy ra \(\frac{2a^2}{b+c}\le\frac{a^2}{b}\)
Chưng minh tương tự có \(\frac{2b^2}{c+a}\le\frac{b^2}{c}\)và \(\frac{2c^2}{a+b}\le\frac{c^2}{a}\)
Cộng vế với vế của các bđt cùng chiều trên ta sẽ suy ra điều phải chứng minh
#nga
Sai rồi nếu như theo cách chứng minh của bạn thì ta có: a + c \(\ge2c\)cái này vô lý.
Áp dụng bđt \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) ( biến đổi tương đương ) ta có
\(\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\ge\frac{\frac{\left(a+b\right)^2}{2}}{2c}+\frac{\frac{\left(b+c\right)^2}{2}}{2a}+\frac{\frac{\left(c+a\right)^2}{2}}{2b}\)
\(=\frac{\left(a+b\right)^2}{4c}+\frac{\left(b+c\right)^2}{4a}+\frac{\left(c+a\right)^2}{4b}\)
+ \(\frac{\left(a+b\right)^2}{4c}+c\ge2\sqrt{\frac{\left(a+b\right)^2}{4c}\cdot c}=a+b\) Dấu "=" \(\Leftrightarrow a+b=2c\)
Viết các bđt tương tự rồi cộng vế theo vế là được
Dấu "=" <=> a=b=c
Theo e nghĩ là đề phải như này cơ ạ :
\(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\le\frac{3}{2}\)
Biến đổi và sử dụng Cô - si là sẽ ra :
Ta có : \(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)+\left(a+c\right)}}+\frac{b}{\sqrt{\left(c+b\right)+\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)+\left(b+c\right)}}\)
\(=\sqrt{\frac{a.a}{\left(a+b\right)+\left(a+c\right)}}+\sqrt{\frac{b.b}{\left(b+a\right)+\left(b+c\right)}}+\sqrt{\frac{c.c}{\left(c+a\right)+\left(c+b\right)}}\)
\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Đề không sai đâu:P
\(VT=\Sigma_{cyc}2\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{\left(a+b\right)+\left(a+c\right)}\right]\)
\(\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}\right]=\frac{3}{2}\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
Làm đại nha!
Chuyển vế qua ta có bđt tương đương
\(\left(\frac{a^2}{b}-\frac{2a^2}{b+c}\right)+\left(\frac{b^2}{c}-\frac{2b^2}{c+a}\right)+\left(\frac{c^2}{a}-\frac{2c^2}{a+b}\right)\ge0\)
\(\Leftrightarrow\frac{a^2\left(c-b\right)}{b\left(b+c\right)}+\frac{b^2\left(a-c\right)}{c\left(c+a\right)}+\frac{c^2\left(b-a\right)}{a\left(a+b\right)}\ge0\)(1)
Nhiệm vụ là đi CM Bđt trên
Biến (1) thành dạng: \(S_1\left(c-b\right)^2+S_2\left(a-c\right)^2+S_3\left(b-a\right)^2\ge0\)(2)
trong đó: \(\hept{\begin{cases}S_1=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}\\S_2=\frac{b^2}{c\left(c+a\right)\left(a-c\right)}\\S_3=\frac{c^2}{a\left(a+b\right)\left(b-a\right)}\end{cases}}\)
\(\left(2\right)\Leftrightarrow S_1\left(c-b\right)^2-S_2\left[\left(c-b\right)+\left(b-a\right)\right]^2+S_3\left(b-a\right)^2\ge0\)
\(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2-2\left(c-b\right)\left(b-a\right)S_2\ge0\)
hay \(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2+2\left(c-b\right)\left(b-a\right)\left(-S_2\right)\ge0\)(3)
Tới đây cần chứng minh (3) đúng
Xét: \(S_1-S_2=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}-\frac{b^2}{c\left(c+a\right)\left(a-c\right)}=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}+\frac{b^2}{c\left(c+a\right)\left(c-a\right)}>0\)(do từ gt)
Xét \(S_3-S_2=.....>0\)(tương tự làm nha)
Xét \(-S_2=\frac{b^2}{c\left(a+c\right)\left(c-a\right)}>0\)
Có: \(\hept{\begin{cases}S_1-S_2>0\\S_3-S_2>0\\-S_2>0\end{cases}}\)Suy ra (3) đúng
Suy ra (2) và (1) cũng đúng
Vậy .........
Không biết đúng không
bạn làm nhầm rồi
Đoạn \(\left(2\right)\Leftrightarrow....+S_2\)bạn ghi thành \(\Leftrightarrow...-S_2\)