K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

Làm đại nha!

Chuyển vế qua ta có bđt tương đương

\(\left(\frac{a^2}{b}-\frac{2a^2}{b+c}\right)+\left(\frac{b^2}{c}-\frac{2b^2}{c+a}\right)+\left(\frac{c^2}{a}-\frac{2c^2}{a+b}\right)\ge0\)

\(\Leftrightarrow\frac{a^2\left(c-b\right)}{b\left(b+c\right)}+\frac{b^2\left(a-c\right)}{c\left(c+a\right)}+\frac{c^2\left(b-a\right)}{a\left(a+b\right)}\ge0\)(1)

Nhiệm vụ là đi CM Bđt trên

Biến (1) thành dạng: \(S_1\left(c-b\right)^2+S_2\left(a-c\right)^2+S_3\left(b-a\right)^2\ge0\)(2)

trong đó: \(\hept{\begin{cases}S_1=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}\\S_2=\frac{b^2}{c\left(c+a\right)\left(a-c\right)}\\S_3=\frac{c^2}{a\left(a+b\right)\left(b-a\right)}\end{cases}}\)

\(\left(2\right)\Leftrightarrow S_1\left(c-b\right)^2-S_2\left[\left(c-b\right)+\left(b-a\right)\right]^2+S_3\left(b-a\right)^2\ge0\)

\(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2-2\left(c-b\right)\left(b-a\right)S_2\ge0\)

hay \(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2+2\left(c-b\right)\left(b-a\right)\left(-S_2\right)\ge0\)(3)

Tới đây cần chứng minh (3) đúng

Xét: \(S_1-S_2=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}-\frac{b^2}{c\left(c+a\right)\left(a-c\right)}=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}+\frac{b^2}{c\left(c+a\right)\left(c-a\right)}>0\)(do từ gt)

Xét \(S_3-S_2=.....>0\)(tương tự làm nha)

Xét \(-S_2=\frac{b^2}{c\left(a+c\right)\left(c-a\right)}>0\)

Có: \(\hept{\begin{cases}S_1-S_2>0\\S_3-S_2>0\\-S_2>0\end{cases}}\)Suy ra (3) đúng

Suy ra (2) và (1) cũng đúng 

Vậy .........

Không biết đúng không

1 tháng 6 2019

bạn làm nhầm rồi 

Đoạn \(\left(2\right)\Leftrightarrow....+S_2\)bạn ghi thành \(\Leftrightarrow...-S_2\)

9 tháng 2 2020

Áp dụng bđt \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) ( biến đổi tương đương ) ta có

\(\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\ge\frac{\frac{\left(a+b\right)^2}{2}}{2c}+\frac{\frac{\left(b+c\right)^2}{2}}{2a}+\frac{\frac{\left(c+a\right)^2}{2}}{2b}\)

\(=\frac{\left(a+b\right)^2}{4c}+\frac{\left(b+c\right)^2}{4a}+\frac{\left(c+a\right)^2}{4b}\)

+ \(\frac{\left(a+b\right)^2}{4c}+c\ge2\sqrt{\frac{\left(a+b\right)^2}{4c}\cdot c}=a+b\) Dấu "=" \(\Leftrightarrow a+b=2c\)

Viết các bđt tương tự rồi cộng vế theo vế là được

Dấu "=" <=> a=b=c

9 tháng 2 2020

\(\frac{a^3}{bc}+\frac{b^3}{ca}=\frac{a^4}{abc}+\frac{b^4}{abc}\ge\frac{\left(a^2+b^2\right)^2}{2abc}\ge\frac{2ab\left(a^2+b^2\right)}{2abc}=\frac{a^2+b^2}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

viết các bđt tương tự rồi cộng vế theo vế là được

Áp dụng BĐT Cô-si ta có:

\(a^2+b^2\ge2ab;b^2+1^2\ge2b\)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2\)

\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}=\frac{1}{2}.\frac{1}{ab+b+1}\)

chứng minh tương tự

\(\Rightarrow\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1};\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ac+a+1}\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\)

\(=\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)

\(=\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.1=2\)

=>đpcm

30 tháng 4 2016
Bài này mk giải được nè chiều mk giải cho nha