K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

#)Giải :

 \(S=2+4+6+...+2n=6972\)

\(\Rightarrow\frac{\left(2n+2\right)\left[\left(2n-2\right):2+1\right]}{2}=6972\)

\(\Rightarrow\frac{2\left(n+1\right)n}{2}=6972\)

\(\Rightarrow n\left(n+1\right)=6972\)

\(\Rightarrow n^2+n-6972=0\)

\(\Rightarrow\left(n+84\right)\left(n-83\right)=0\)

\(\Rightarrow n=83\)

                #~Will~be~Pens~#

31 tháng 5 2019

Mình chưa hok lớp 9

sorry bạn

nhtp

Y
21 tháng 5 2019

\(S=\frac{\left(2n+2\right)\left[\left(2n-2\right):2+1\right]}{2}=6972\)

\(\Rightarrow\frac{2\left(n+1\right)n}{2}=6972\)

\(\Rightarrow n\left(n+1\right)=6972\)

\(\Rightarrow n^2+n-6972=0\)

\(\Rightarrow\left(n+84\right)\left(n-83\right)=0\)

\(\Rightarrow n=83\) ( TM )

17 tháng 12 2023

b: \(2n+8⋮n-1\)

=>\(2n-2+10⋮n-1\)

=>\(10⋮n-1\)

=>\(n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

=>\(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{2;0;3;6;11\right\}\)

a: \(S=1+2^2+2^4+...+2^{100}\)

=>\(4\cdot S=2^2+2^4+2^6+...+2^{102}\)

=>\(4\cdot S-S=2^2+2^4+2^6+...+2^{102}-1-2^2-2^4-...-2^{100}\)

=>\(3\cdot S=2^{102}-1\)

=>\(S=\dfrac{2^{102}-1}{3}\)

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

11 tháng 9 2018

Số số hạng là :

( 2n - 2 ) : 2 + 1 

= 2 ( n - 1 ) : 2 + 1

= n - 1 + 1

= n

Tổng là :

( 2n + 2 ) . n : 2 = 110

2 ( n + 1 ) . n : 2 = 110

n ( n + 1 ) = 110

mà n và n+1 là 2 số liên tiếp mặt khác ta có 110 = 10 . 11

=> n = 10

Vậy, n = 10

11 tháng 9 2018

Chó đuổi kìa !

20 tháng 11 2014

Bài 1 :

Gọi số đó là a (a \(\in\) N)

Ta có :

a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7 

\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103

 

 

9 tháng 1 2017

Bài 1 :

Gọi số đó là a (a ∈ N)

Ta có :

a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7 

⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

⇒a + 2 = 105 

19 tháng 10 2015

dài quá mình ko làm hết.

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

DT
16 tháng 10 2023

a) 7n chia hết cho n+4

=> 7(n+4) -28 chia hết cho n+4

=> 28 chia hết cho n+4 ( Vì : 7(n+4) chia hết cho n+4 với mọi STN n )

=> n+4 thuộc Ư(27)= { \(\pm1;\pm3;\pm9;\pm27\) }

Đến đây bạn lập bảng gt rồi tìm ra x nhé.

DT
16 tháng 10 2023

b) n^2 + 2n + 6 chia hết cho n +4

=> n(n+4)-2(n+4)+14 chia hết cho n + 4

=> (n+4)(n-2)+14 chia hết cho n + 4

=> 14 chia hết cho n + 4 ( Vì : (n+4)(n-2) chia hết cho n + 4 với mọi STN n )

=> n+4 thuộc Ư(14)= {\(\pm1;\pm2;\pm7;\pm14\)}

Lập bảng giá trị rồi tìm ra x nha bạn