K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2019

Đặt \(sinx=a\) (\(-1\le a\le1\) ) \(\Rightarrow2a^2-\left(5m+1\right)a+2m^2+2m=0\) (1)

Để pt đã cho có đúng 5 nghiệm thuộc \(\left(-\frac{\pi}{2};3\pi\right)\) ta có 2 trường hợp sau:

TH1: \(\left\{{}\begin{matrix}a_1=1\\-1< a_2\le0\end{matrix}\right.\)

\(\Rightarrow2-5m-1+2m^2+2m=0\Leftrightarrow2m^2-3m+1=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\Rightarrow a_2=\frac{2m^2+2m}{2}=2\left(l\right)\\m=\frac{1}{2}\Rightarrow a_2=\frac{3}{4}\left(l\right)\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a_1=-1\\0< a_2< 1\end{matrix}\right.\)

\(\Rightarrow2+5m+1+2m^2+2m=0\Rightarrow2m^2+7m+3=0\)

\(\Rightarrow\left[{}\begin{matrix}m=-3\Rightarrow a_2=-6\left(l\right)\\m=-\frac{1}{2}\Rightarrow a_2=\frac{1}{4}\end{matrix}\right.\)

Vậy \(m=-\frac{1}{2}\)

8 tháng 9 2019

còn th a=0

NV
16 tháng 9 2021

Từ đường tròn lượng giác, trên \(\left(-\dfrac{\pi}{2};3\pi\right)\):

- Nếu \(0< t< 1\) thì \(sinx=t\) có 4 nghiệm

- Nếu \(-1< t< 0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=1\) thì \(sinx=t\) có 2 nghiệm

- Nếu \(t=-1\) thì \(sinx=t\) có 1 nghiệm

Do đó pt đã cho có 5 nghiệm pb trong khoảng đã cho khi:

\(2t^2-\left(5m+1\right)t+2m^2+2m=0\) có 2 nghiệm pb thỏa mãn:

- TH1: \(\left\{{}\begin{matrix}t_1=-1\\0< t_2< 1\end{matrix}\right.\)

- TH2: \(\left\{{}\begin{matrix}-1< 0< t_1\\t_2=1\end{matrix}\right.\)

- TH3:  \(\left\{{}\begin{matrix}t_1=0\\t_2=1\end{matrix}\right.\)

Về cơ bản, chỉ cần thay 1 nghiệm bằng 0 hoặc 1 rồi kiểm tra nghiệm còn lại có thỏa hay ko là được

17 tháng 9 2021

Em làm cách khác cơ.

Δ = (...)2 nên viết hẳn 2 nghiệm ra

rồi vẽ bảng biến thiên của y = sinx 

8 tháng 3 2018

loading...  loading...  loading...  

5 tháng 7 2021

a) Pt\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2xcos^2x\left(sin^2x+cos^2x\right)+3sinx.cosx-\dfrac{m}{4}+2=0\)

\(\Leftrightarrow1-\dfrac{3}{4}sin^22x-\dfrac{3}{2}sin2x-\dfrac{m}{4}+2=0\)

\(\Leftrightarrow-3sin^22x-6sin2x-m+12=0\)

Đặt \(t=sin2x;t\in\left[-1;1\right]\)

Pttt: \(-3t^2-6t-m+12=0\)

\(\Leftrightarrow-3t^2-6t+12=m\) (1)

Đặt \(f\left(t\right)=-3t^2-6t+12;t\in\left[-1;1\right]\) 

Vẽ BBT sẽ tìm được \(f\left(t\right)_{min}=3;f\left(t\right)_{max}=15\)\(\Leftrightarrow3\le f\left(t\right)\le15\)\(\Rightarrow m\in\left[3;15\right]\) thì pt (1) sẽ có nghiệm

mà \(m\in Z\) nên tổng m nguyên để pt có nghiệm là 13 m

Vậy có tổng 13 m nguyên

5 tháng 7 2021

b) Pt\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(1\right)\\2cos^2x-\left(2m+1\right)cosx+m=0\left(2\right)\end{matrix}\right.\)

Từ (1)\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)

\(x\in\left[0;2\pi\right]\Rightarrow0\le\dfrac{\pi}{2}+k2\pi\le2\pi\)\(\Leftrightarrow-\dfrac{1}{4}\le k\le\dfrac{3}{4}\)\(\Rightarrow k=0\)

Tại k=0\(\Rightarrow x=\dfrac{\pi}{2}\)

Để pt ban đầu có 4 nghiệm pb \(\in\left[0;2\pi\right]\)

\(\Leftrightarrow\) Pt (2) có 3 nghiệm pb khác \(\dfrac{\pi}{2}\)

Xét pt (2) có: \(2cos^2x-\left(2m+1\right)cosx+m=0\)

Vì là phương trình bậc hai ẩn \(cosx\) nên pt (2) chỉ có nhiều nhất ba nghiệm \(\Leftrightarrow\) Pt (2) có một nghiệm cosx=0

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) mà \(x\ne\dfrac{\pi}{2}\)

\(\Rightarrow\) Pt (2) chỉ có nhiều nhất hai nghiệm

\(\Rightarrow\) Pt ban đầu không thể có 4 nghiệm phân biệt

Vậy \(m\in\varnothing\) 

23 tháng 8 2017

Phương trình sinx = 1/2 không có nghiệm  x ∈   - π 2 ;   0

Nên  để phương trình đã cho có  nghiệm  x ∈   - π 2 ;   0  khi và chỉ khi phương trình sinx = m có nghiệm trên khoảng đó. Kết hợp với (*) suy ra  -1< m< 0

30 tháng 12 2017

Đáp án C