Chứng minh các BĐT sau với a,b,c dương: (chỉ dùng phương pháp biến đổi tương đương)
\(P=\left(a+b+c\right)^3-27abc\)
\(Q=\left(a+b\right)\left(b+c\right)\left(c+a\right)-8abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức trên không đúng. Bạn có thể kiểm tra với a = b = -1.
Ta có: \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2\left(b+c\right)+ab\left(b+c\right)+bc\left(b+c\right)+ac\left(b+c\right)+abc\)
\(=\left(b+c\right)\left(a^2+ab+bc+ac\right)+abc\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
Vậy BĐT cần chứng minh trở thành:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{8}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\frac{1}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le0\) \(?!\)
Bất đẳng thức sai
Thử lại với \(a=b=c=1\) thì \(9\le\frac{64}{9}\) sai thật
BĐT đúng có lẽ là:
\(\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó:
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (đúng theo AM-GM)
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c\)
Sửa đề: \(\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Vì vai trò a,b,c như nhau nên ta giả sử
\(a\ge b\ge c>0\)
Ta có: \(2b\left(a+c\right)^2-\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+c\right)\left(a-b\right)\left(b-c\right)\ge0\)
\(\Rightarrow2b\left(a+c\right)^2\ge\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó:
\(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}\) (1)
Mà \(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}-2=\frac{\left(a^2+c^2-ab-bc\right)^2}{\left(a+c\right)^2\left(ab+bc+ca\right)}\ge0\) (2)
Từ (1) và (2) =>Đpcm
Ta dễ dàng chứng minh được \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge1\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge\frac{a^2+b^2+c^2+a^2}{ab+bc+ac+a^2}=\frac{2a^2+b^2+c^2}{\left(a+c\right)\left(a+b\right)}\)
Suy ra cần chứng minh \(\frac{2a^2+b^2+c^2}{\left(a+b\right)\left(a+c\right)}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
Điều này tương đương với \(\left(b+c\right)\left(2a^2+b^2+c^2\right)+8abc\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow2a^2b+2a^2c+b^3+b^2c+c^2b+c^3+8abc\ge2\left(2abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2\right)\)
\(\Leftrightarrow\left(b^2-2bc+c^2\right)\left(b+c-2a\right)\ge0\Leftrightarrow\left(b-c\right)^2\left(b+c-2a\right)\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
Ta có: VP = \(a\left(b^2-2bc+c^2\right)+b\left(c^2-2ac+a^2\right)+c\left(a^2-2ab+b^2\right)\)
= \(ab^2+ac^2+bc^2+ba^2+ca^2+cb^2-6abc\)(1)
\(VT=\left(ab+b^2+ac+bc\right)\left(c+a\right)-8abc\)
\(=abc+b^2c+ac^2+bc^2+a^2b+b^2a+a^2c+abc-8abc\)
= \(ab^2+ac^2+bc^2+ba^2+ca^2+cb^2-6abc\)(2)
Từ (1) ; (2) => VT = VP
Vậy đẳng thức luôn đúng.
Bất đẳng thức cần chứng minh tương đương:
\(\left(\dfrac{a^2+b^2}{a+b}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)+\left(\dfrac{b^2+c^2}{b+c}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)+\left(\dfrac{c^2+a^2}{c+a}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)\le0\)
\(\Leftrightarrow\dfrac{a^2c+b^2c-c^2a-bc^2}{\left(a+b\right)\left(a+b+c\right)}+\dfrac{b^2a+c^2a-a^2b-ca^2}{\left(b+c\right)\left(a+b+c\right)}+\dfrac{c^2b+a^2b-b^2c-ab^2}{\left(c+a\right)\left(a+b+c\right)}\le0\)
\(\Leftrightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}+\dfrac{cb\left(c-b\right)+ab\left(a-b\right)}{c+a}\le0\) (1).
Không mất tính tổng quát giả sử \(a\geq b\geq c\).
Ta có \(\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{c+a}\\ac\left(a-c\right)+bc\left(b-c\right)\ge0\end{matrix}\right.\Rightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}\le\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{c+a}\);
\(\left\{{}\begin{matrix}\dfrac{1}{b+c}\ge\dfrac{1}{c+a}\\ba\left(b-a\right)+ca\left(c-a\right)\le0\end{matrix}\right.\Rightarrow\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}\le\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{c+a}\).
Từ đó: \(\Leftrightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}+\dfrac{cb\left(c-b\right)+ab\left(a-b\right)}{c+a}\le\dfrac{ac\left(a-c\right)+bc\left(b-c\right)+ba\left(b-a\right)+ca\left(c-a\right)+cb\left(c-b\right)+ab\left(a-b\right)}{c+a}=0\).
Do đó (1) đúng hay bđt ban đầu cũng đúng. Đẳng thức xảy ra khi a = b = c.
b.
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)-8abc\ge0\)
\(\Leftrightarrow a^2b+ac^2+a^2c+b^2c+b^2a+bc^2-6abc\ge0\)
\(\Leftrightarrow a\left(b^2-2bc+c^2\right)+b\left(c^2-2ca+a^2\right)+c\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)(luôn đúng)
dấu "=" xảy ra khi a=b=c.
Ối chết,thiếu :v. Chứng minh hai biểu thức trên \(\ge0\) nha!
Thanks zZz Cool Kid zZz best toán :v đã nhắc nhở!