Tìm Min P=\(\frac{x^4+2x^2+2}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).
Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)
Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\)
Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.
Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.
\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)
Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.
Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)
Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),
max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)
với đk 0 ≤ x # 1, biểu thức đã cho xác định
P = (x+2)/(x√x-1) + (√x+1)/(x+√x+1) - (√x+1)/(x-1)
P = (x+2)/ (√x-1)(x+√x+1) + (√x+1)/ (x+√x+1) - 1/(√x-1) {hđt: x-1 = (√x-1)(√x+1)}
P = [(x+2) + (√x+1)(√x-1) - (x+√x+1)] / (x√x-1)
P = (x-√x)/(x√x-1) = (√x-1)√x /(√x-1)(x+√x+1)
P = √x / (x+√x+1)
- - -
ta xem ở trên là biểu thức rút gọn của P, để chứng minh P < 1/3 ta biến đổi tiếp:
P = 1/ (√x + 1 + 1/√x)
bđt côsi: √x + 1/√x ≥ 2 ; dấu "=" khi x = 1 nhưng do đk xác định nên ko có dấu "="
vậy √x + 1/√x > 2 <=> √x + 1 + 1/√x > 3 <=> P = 1/(√x + 1 + 1/√x) < 1/3 (đpcm)
\(A=\frac{2x^2+x-1}{x^2-2x+2}\Leftrightarrow Ax^2-2A.x+2A=2x^2+x-1\)
\(\Leftrightarrow x^2\left(A-2\right)-2x\left(A+1\right)+\left(2A+1\right)=0\) (1)
+) Với A = 2 thì \(-6x+5=0\Leftrightarrow x=-\frac{5}{6}\)
+) Với A khác 2 thì (1) là phương trình bậc 2.Tức (1) có nghiệm
Hay \(\Delta'=\left(A+1\right)^2-\left(A-2\right)\left(2A+1\right)\ge0\)
Giải cái bất phương trình trên là ok!
Ta có:
\(P=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(P=\left(x^2+1\right)+\frac{1}{x^2+1}\)
Dễ thấy x2 + 1 > 0
Áp dụng BĐT Cauchy - Schwarz với hai số thực không âm ta có:
\(P=\left(x^2+1\right)+\frac{1}{x^2+1}\ge2\sqrt{\left(x^2+1\right).\frac{1}{x^2+1}}=2\)
Dấu "=" xảy ra khi và chỉ khi x2 + 1 = \(\frac{1}{x^2+1}\) \(\Leftrightarrow\) x = 0
Vậy Pmin = 2 \(\Leftrightarrow\) x = 0
TRẦN MINH HOÀNG t nghe thằng Quang Minh ns vs t là jj đó mà m yêu con Na nào đó với Ngọc Khánh jj đó nữa