Bài 3 : tìm nghiệm của các đa thức sau
a) 3x - 6
b) -5y + 30
c) ( z - 3 ) . ( 16 - 4z )
d) \(x^2\) - 3
Bài 4 : cho đa thức f(x) = \(x^2+4x-5\)
a) số -5 có phải nghiệm của f(x) không
b) viết tập hợp S tất cả các nghiệm của f(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
Giải thích các bước giải:
a) F(x) = 3x – 6
F(x) = 0 ⇔ 3x – 6 = 0
⇔ 3x = 6
⇔ x = 2
b) U(y) = -5y + 30
U(y) = 0 ⇔ -5y + 30 = 0
⇔ -5y = -30
⇔ y = 6
c) G(z) = (z – 3) (16 – 4z)
G(z) = 0 ⇔
)
⇔
a) Để cho đa thức F(x) có nghiệm thì \(3x-6=0\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=6:3\)
\(\Rightarrow x=2\)
b) Để cho đa thức U(y) có nghiệm thì \(-5y+30=0\)
\(\Rightarrow-5y=30\)
\(\Rightarrow y=30:-5\)
\(\Rightarrow y=6\)
c) Để cho đa thức G(z) có nghiệm thì \(\left(z-3\right)\left(16-4z\right)=4\left(z-3\right)\left(4-z\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}z-3=0\\4-z=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}z=3\\z=4\end{matrix}\right.\)
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
Bài 2:
a: A(x)=0
=>-4x+7=0
=>4x=7
=>x=7/4
b: B(x)=0
=>x(x+2)=0
=>x=0 hoặc x=-2
c: C(x)=0
=>1/2-căn x=0
=>căn x=1/2
=>x=1/4
d: D(x)=0
=>2x^2-5=0
=>x^2=5/2
=>\(x=\pm\dfrac{\sqrt{10}}{2}\)
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
`f( x) = 3x -6`
`-> 3x-6=0`
`=> 3x=0+6`
`=> 3x=6`
`=>x=6:3`
`=>x=2`
__
`h( x) =-5 x+30`
`-> -5x +30=0`
`=> -5x=0-30`
`=>-5x=-30`
`=>x=6`
__
`g(x) = ( x-3)(16-4x)`
`-> ( x-3)(16-4x)=0`
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\16-4x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\4x=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
__
`k( x) = x^2-81`
`->x^2-81=0`
`=> x^2=81`
`=> x^2 =+-9^2`
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
\(3x-6=0\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy nghiệm của đa thức f(x) là \(x=2\)
\(-5x+30=0\)
\(\Rightarrow-5x=-30\)
\(\Rightarrow x=6\)
Vậy nghiệm của đa thức h(x) là \(x=6\)
\(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\16-4x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\4x=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy nghiệm của đa thức g(x) là \(x\in\left\{3;4\right\}\)
\(x^2-81=0\)
\(\Rightarrow x^2=81\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
Vậy nghiệm của đa thức k(x) là \(x\in\left\{9;-9\right\}\)
a, \(3x-6=0\)
\(\Leftrightarrow3\left(x-2\right)=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
b, \(-5y+30=0\)
\(\Leftrightarrow-5\left(y-6\right)=0\)
\(\Rightarrow y-6=0\Rightarrow y=6\)
c, \(\left(z-3\right)\left(16-4z\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}z-3=0\Rightarrow z=3\\16-4z=0\Leftrightarrow4\left(4-z\right)=0\Rightarrow z=4\end{matrix}\right.\)
d, \(x^2-3=0\)
\(\Rightarrow x^2=3\Rightarrow x=\sqrt{3}\)
a, -5 có phải là nghiệm của đa thức f(x)
b, \(S\in\left\{-5;1\right\}\)