Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(-5\right)=\left(-5\right)^2+4\cdot\left(-5\right)-5=0\)
=>x=-5 là nghiệm của f(x)
b: S={-5;1}
Đáp án:
Giải thích các bước giải:
a) F(x) = 3x – 6
F(x) = 0 ⇔ 3x – 6 = 0
⇔ 3x = 6
⇔ x = 2
b) U(y) = -5y + 30
U(y) = 0 ⇔ -5y + 30 = 0
⇔ -5y = -30
⇔ y = 6
c) G(z) = (z – 3) (16 – 4z)
G(z) = 0 ⇔
)
⇔
a) Để cho đa thức F(x) có nghiệm thì \(3x-6=0\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=6:3\)
\(\Rightarrow x=2\)
b) Để cho đa thức U(y) có nghiệm thì \(-5y+30=0\)
\(\Rightarrow-5y=30\)
\(\Rightarrow y=30:-5\)
\(\Rightarrow y=6\)
c) Để cho đa thức G(z) có nghiệm thì \(\left(z-3\right)\left(16-4z\right)=4\left(z-3\right)\left(4-z\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}z-3=0\\4-z=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}z=3\\z=4\end{matrix}\right.\)
a, Ta có: Với x = -5
→ f(-5) = (-5)2 + 4.(-5) - 5
= 25 + ( -20 ) - 5
= 5 - 5 = 0
Vì f(-5) = 0 nên x = -5 là nghiệm của đa thức f(x)
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
a) ta có:
+) x = 5 => f(5) = 52 - 6.5 + 5 = 25 - 30 + 5 = 0
=> x = 5 là nghiệm của f(x)
+) x = 3 => f(3) = 32 - 6.3 + 5 = 9 - 18 + 5 = -4
=> x = 3 ko là nghiệm của f(x)
+) x = 1 =. f(1) = 12 - 6.1 + 5 = 1 - 6 + 5 = 0
=> x = 1 là nghiệm của f(x)
+) x = 0 => f(0) = 02 - 6.0 + 5 = 5
=> x = 5 ko là nghiệm của f(x)
b) Tập hợp S = {5; -1}
c) Ta có : x4 \(\ge\)0 ; 1/5x2 \(\ge\)0 ; 2012 > 0
=> x4 + 1/5x2 + 2012 > 0
=> đa thức h(x) ko có nghiệm
\(a.\)Thay lần lượt các giá trị của \(x\)trong tập hợp số \(\left\{5;3;-1;0\right\}\)vào đa thức \(f\left(x\right)\)như bn Edogawa Conan nha !
Ta thấy \(f\left(5\right)=5^2-6.5+5=0\)nên \(x=5\)là 1 ngiệm của \(f\left(x\right)\)
\(b.\)Ta có: \(f\left(x\right)=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
\(f\left(x\right)=0\Leftrightarrow\cdot x-1\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
\(c.\)Xét đa thức \(h\left(x\right)=x^4+\frac{1}{5}x^2+2012\)
Do \(x^4\ge0\)và \(\frac{1}{5}x^2\ge0\)với mọi \(x\)nên \(h\left(x\right)>0\)với mọi \(x\)
Vậy \(h\left(x\right)\ne0\)với mọi \(x\)Do đó đa thức \(h\left(x\right)\)không có nghiệm
mh biết làm bài này rùi bn có cần mih đang lên cho bn ko?
Bài 2:
a: A(x)=0
=>-4x+7=0
=>4x=7
=>x=7/4
b: B(x)=0
=>x(x+2)=0
=>x=0 hoặc x=-2
c: C(x)=0
=>1/2-căn x=0
=>căn x=1/2
=>x=1/4
d: D(x)=0
=>2x^2-5=0
=>x^2=5/2
=>\(x=\pm\dfrac{\sqrt{10}}{2}\)
a, \(3x-6=0\)
\(\Leftrightarrow3\left(x-2\right)=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
b, \(-5y+30=0\)
\(\Leftrightarrow-5\left(y-6\right)=0\)
\(\Rightarrow y-6=0\Rightarrow y=6\)
c, \(\left(z-3\right)\left(16-4z\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}z-3=0\Rightarrow z=3\\16-4z=0\Leftrightarrow4\left(4-z\right)=0\Rightarrow z=4\end{matrix}\right.\)
d, \(x^2-3=0\)
\(\Rightarrow x^2=3\Rightarrow x=\sqrt{3}\)
a, -5 có phải là nghiệm của đa thức f(x)
b, \(S\in\left\{-5;1\right\}\)