Giải PT: X^2-4-3(X-2)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x-4\right)=\left(x^2-2x-3\right)\left(x^2-2x-8\right)\)
Đặt \(x^2-2x-3=t\)
\(\text{pt thành }t\left(t-5\right)=36\Leftrightarrow t^2-5t-36=0\Leftrightarrow t=9\text{ hoặc }t=-4\)
\(+t=9\Rightarrow x^2-2x-3=9\Leftrightarrow x^2-2x-12=0\Leftrightarrow x=1+\sqrt{13}\text{ hoặc }x=1-\sqrt{13}\)
\(+t=-4\Rightarrow x^2-2x-3=-4\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy ....
\(\left\{{}\begin{matrix}\sqrt{x^2-4}\ge0\\\sqrt{x+2}\ge0\end{matrix}\right.\Rightarrow\sqrt{x^2-4}+\sqrt{x+2}\ge0mà:\sqrt{x^2-4}+\sqrt{x+2}=0\Rightarrow\left\{{}\begin{matrix}x^2-4=0\\x+2=0\end{matrix}\right.\Rightarrow x=-2\)