Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x-3\right)-2x^2=4\\ \Leftrightarrow2x^2-6x-2x^2=4\\ \Leftrightarrow-6x=4\\ \Leftrightarrow x=-\dfrac{2}{3}\\ KL:...\)
\(\Leftrightarrow\frac{x}{x-3}-\frac{x}{x-5}-\frac{x}{x-4}+\frac{x}{x-6}=0\)
\(\Leftrightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Leftrightarrow x\left(\frac{x-6+x-3}{\left(x-3\right)\left(x-6\right)}-\frac{x-4+x-5}{\left(x-4\right)\left(x-5\right)}\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)\left(\frac{1}{x^2-9x+18}-\frac{1}{x^2-9x+20}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{9}{2}\end{matrix}\right.\)
B/\(\Leftrightarrow\frac{2\left(3x^2-11x+9\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}-\frac{6}{x-6}=0\)
\(\Leftrightarrow-\frac{2\left(11x^2-42x+36\right)}{\left(x-6\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)\(\Rightarrow11x^2-42x+36=0\)\(\Leftrightarrow11x^2-42x+\frac{441}{11}-\frac{45}{11}=\left(\sqrt{11}x+\frac{21}{\sqrt{11}}\right)^2-\frac{45}{11}.\)Dùng căn giải típ nha
Sửa đề: thêm (...) phần mẫu :
\(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\\ \)
ĐK: \(x^2-3x+3\ne0\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\left(3-\frac{9}{4}\right)\ne0\) có (3-9/4)>0 vậy các mẫu khác không với mọi x
Đặt x^2-3x+4=t => t>=(4-9/4)=7/4
\(\Leftrightarrow\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\Leftrightarrow\frac{t\left(t+1\right)}{t\left(t-1\right)\left(t+1\right)}+\frac{2\left(t^2-1\right)}{t\left(t-1\right)\left(t+1\right)}=\frac{6t\left(t-1\right)}{t\left(t-1\right)\left(t+1\right)}\)
\(\Leftrightarrow\left(t^2+t\right)+\left(2t^2-2\right)=6t^2-6t\)\(\Leftrightarrow3t^2-7t=-2\)
\(\Leftrightarrow t^2-2.\frac{7}{6}t+\left(\frac{7}{6}\right)^2=\frac{49}{36}-\frac{2}{3}=\frac{3.49-2.36}{3.36}=\frac{49-2.12}{36}=\frac{25}{36}=\left(\frac{5}{6}\right)^2\)
\(\Leftrightarrow\left(t-\frac{7}{6}\right)^2=\left(\frac{5}{6}\right)^2\Rightarrow\left\{\begin{matrix}t=\frac{7+5}{6}=2\\t=\frac{7-5}{6}=-\frac{1}{3}\left(loai\right)\end{matrix}\right.\) 7/4<2 loại luôn
Kết luận vô nghiệm
Nhầm 7/4<2 có nghiệm
tiếp:
x^2-3x+4=2<=>x^2-3x+2=0 {a+b+c=0}
x=1 hoạc x=2
Kết luận: pt có nghiệm x=1 hoạc x=2
ĐK: \(x\ne0\)
Đặt \(x+\frac{1}{x}=a\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}+2=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(pt\Leftrightarrow2\left(a^2-2\right)-3a+2=0\)
\(\Leftrightarrow2a^2-4+3a+2=0\)
\(\Leftrightarrow2a^2+3a-2=0\)
\(\Leftrightarrow2a^2+4a-a-2=0\)
\(\Leftrightarrow2a\left(a+2\right)-\left(a+2\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(2a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-2\\a=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-2\\x+\frac{1}{x}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\varnothing\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=-1\)
\(3x^2+7x-20=0\)
Ta có \(\Delta=7^2+4.3.20=289,\sqrt{\Delta}=17\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7+17}{6}=\frac{5}{3}\\x=\frac{-7-17}{6}=-4\end{cases}}\)
a) \(2x-\frac{3x-1}{3}=2+\frac{x-3}{4}\)
<=> 24x - 4(3x - 1) = 24 + 3(x - 3)
<=> 24x - 12x - 4 = 24 + 3x - 9
<=> 12x + 4 = 24 + 3x - 9
<=> 12x + 4 = 3x + 15
<=> 12x = 3x + 15 - 4
<=> 12x = 3x + 11
<=> 12x - 3x = 11
<=> 9x = 11
<=> x = 11/9
Vậy: tập nghiệm phương trình: S = {11/9}
b) \(\frac{x-5}{2}+\frac{1}{4}=\frac{x-2}{3}-x\)
<=> 3(x - 5) + 3/2 = 2(x - 2) - 6x
<=> 3x - 15 + 3/2 = 2x - 4 - 6x
<=> 3x - 27/2 = -4x - 4
<=> 3x = -4x - 4 + 27/2
<=> 3x = -4x + 19/2
<=> 3x + 4x = 19/2
<=> 7x = 19/2
<=> x = 19/14
Vậy: tập nghiệm phương trình: S = {19/14}
c) \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x+2}{8}-5\)
<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{8}-5\)
<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2x+1}{4}-5\)
<=> 2(5x - 3) - 3(7x - 1) = 3(2x + 1) - 60
<=> 10x - 6 - 21x + 3 = 6x + 3 - 60
<=> -11x - 3 = 6x - 57
<=> -3 = 6x - 57 + 11x
<=> -3 = 17x - 57
<=> -3 + 57 = 17x
<=> 54 = 17x
<=> x = 54/17
Vậy: tập nghiệm phương trình: S = {59/17}
d) 3x2 + 7x - 20 = 0
<=> 3x2 + 12x - 5x - 20 = 0
<=> 3x(x + 4) - 5(x + 4) = 0
<=> (x + 4)(3x - 5) = 0
<=> x + 4 = 0 hoặc 3x - 5 = 0
<=> x = -4 hoặc x = 5/3
Vậy: tập nghiệm phương trình: S = {-4; 5/3}
e) x3 - 3x + 2 = 0
<=> (x2 + x - 2)(x - 1) = 0
<=> (x - 1)(x + 2)(x - 1) = 0
<=> x - 1 = 0 hoặc x + 2 = 0
<=> x = 1 hoặc x = -2
Vậy: tập nghiệm phương trình: S = {1; -2}
a) x3 - 3x2 + 3x - 1 = 0
<=> (x - 1)3 = 0
<=> x - 1 = 0
<=> x = 1
Vậy ....................
b) (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> 3(x - 7)(x - 1) = 0
\(\Leftrightarrow \begin{bmatrix} x - 7 = 0 & & \\ x - 1 = 0 & & \end{bmatrix}\) pn bỏ dấu ngoặc bên phải nha
\(\Leftrightarrow \begin{bmatrix} x = 7 & & \\ x = 1 & & \end{bmatrix}\)
Vậy .............
a) x3 - 3x2 + 3x - 1 = 0
⇔ (x - 1)3 = 0
⇔ x - 1 = 0
⇔ x = 1
Vậy tập nghiệm phương trình là S = \(\left\{1\right\}\)
b) (2x - 5)2 - (x + 2)2 = 0
⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
⇔ (x - 7)(3x - 3) = 0
⇔ \(\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=7\\3x=3\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy tập nghiệm phương trình là S = \(\left\{1;7\right\}\)