4(x2+\(\frac{1}{x^2}\))-16(x+\(\frac{1}{x}\))+23=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=\frac{23}{16}\)
\(4x+\frac{15}{16}=\frac{23}{16}\)
\(4x=\frac{1}{2}\)
\(x=\frac{1}{8}\)
Vậy \(x=\frac{1}{8}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=\frac{23}{16}\)
\(\Rightarrow\left(x+x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=\frac{23}{16}\)
\(\Rightarrow5x+\frac{15}{32}=\frac{23}{16}\)
\(\Rightarrow5x=\frac{23}{16}-\frac{15}{32}\)
\(\Rightarrow5x=\frac{31}{32}\)
\(\Rightarrow x=\frac{31}{32}.\frac{1}{5}=\frac{31}{160}\)
câu này ở trong Violympic nên mình nói luôn đáp án là 1/8
a)
\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
\(\Leftrightarrow (x-23)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
Dễ thấy: \(\frac{1}{24}>\frac{1}{26}; \frac{1}{25}>\frac{1}{27}\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\)
$\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\neq 0$
Do đó $x-23=0\Rightarrow x=23$
b)
PT \(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Dễ thấy: $\frac{1}{98}< \frac{1}{96}; \frac{1}{97}< \frac{1}{95}$
$\Rightarrow \frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0$ hay khác $0$
$\Rightarrow x+100=0\Rightarrow x=-100$
c)
PT \(\Leftrightarrow \frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow \frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow (x+2005)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Dễ thấy $\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}<0$ hay khác $0$
Do đó $x+2005=0\Rightarrow x=-2005$
d)
PT \(\Leftrightarrow \frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{96}+1=0\)
\(\Leftrightarrow \frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{96}=0\)
\(\Leftrightarrow (300-x)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Dễ thấy \(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}>0\) hay khác $0$
Do đó $300-x=0\Rightarrow x=300$
a, \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=0+\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2=\left(\frac{-1}{4}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\\\frac{1}{x}-\frac{2}{3}=\frac{-1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{x}=\frac{11}{12}\\\frac{1}{x}=\frac{5}{12}\end{cases}\Rightarrow\orbr{\begin{cases}11x=12\\5x=12\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{12}{11}\\x=\frac{12}{5}\end{cases}}}\)
b, \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
Đặt S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\)
2S = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{8.9.10}\)
2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
2S = \(\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)
S = \(\frac{22}{45}:2=\frac{11}{45}\)
\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}\Rightarrow x=\frac{23}{11}\)
a/ (1/x -2/3)2=1/16=(1/4)2
Có 2 trường hợp:
+/ 1/x -2/3= - 1/4
<=> 1/x =2/3 -1/4 = 5/12
=> x1=12/5
+/ 1/x - 2/3 =1/4
<=> 1/x = 2/3 +1/4= 11/12
=> x2=12/11
b/ Ta có:
2/(1.2.3)=1/(1.2) - 1/2.3 ; 2/(2.3.4)=1/2.3 -1/3.4 ; ...; 2/(8.9.10)=1/8.9 -1/9.10
=> (1/1.2.3 + 1/2.3.4 +...+1/8.9.10)=23/45
<=> (1/1.2 -1/2.3 +1/2.3 -1/3.4 +...+1/8.9-1/9.10).x/2=23/45
<=> (1/1.2 -1/9.10).x/2 =23/45
<=> x.11/45=23/45
=> x=23/11
\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x\left(x+1\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
Ta có : `(x-1)/x -1/(x+1) =(2x-1)/(x(x+1))`
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}=\dfrac{2x-1}{x\left(x+1\right)}\)
`=> x^2 +x -x-1 -x-2x+1=0`
`<=> x^2 -3x =0`
`<=> x(x-3)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\end{matrix}\right.\)
__
`(x+2)(5-3x)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\5-3x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)
__
\(\dfrac{5\left(1-2x\right)}{3}+\dfrac{x}{2}=\dfrac{3\left(x-5\right)}{4}-2\)
\(\Leftrightarrow\dfrac{20\left(1-2x\right)}{12}+\dfrac{6x}{12}=\dfrac{9\left(x-5\right)}{12}-\dfrac{24}{12}\)
`<=> 2x- 40x + 6x = 9x - 45 -24`
`<=> 2x- 40x + 6x-9x + 45 +24=0`
`<=>-41x+69=0`
`<=>-41x=-69`
`<=> x=69/41`
a:=>x^2-1-x=2x-1
=>x^2-x-1=2x-1
=>x^2-3x=0
=>x=0(loại) hoặc x=3(nhận)
b:=>x+2=0 hoặc 5-3x=0
=>x=-2 hoặc x=5/3
c:=>20(1-2x)+6x=9(x-5)-24
=>20-40x+6x=9x-45-24
=>-34x+20=9x-69
=>-43x=-89
=>x=89/43
d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3
=>2x^2+4x-19=-2x+7
=>2x^2+6x-26=0
=>x^2+3x-13=0
=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)
e: =>(2x-3)(2x-3-x-1)=0
=>(2x-3)(x-4)=0
=>x=4 hoặc x=3/2
ĐKXĐ: \(x\ne0\)
Đặt \(x+\frac{1}{x}=a\Leftrightarrow x^2+\frac{1}{x^2}+2=a^2\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
Phương trình trở thành:
\(4\left(a^2-2\right)-16a+23=0\)
\(\Leftrightarrow4a^2-16a+15=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{5}{2}\\a=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\x+\frac{1}{x}=\frac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-5x+2=0\\2x^2-3x+2=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)
đkxđ:x≠0
đặt t=x+\(\frac{1}{x}\)
ta có: t2=x2+\(\frac{1}{x^2}\)+2
⇒x2+\(\frac{1}{x^2}\)=t2-2
⇒phương trình trở thành:
4(t2-2)-16t+23=0
⇔4t2-16t+15=0
Δ=(-16)2-4.4.15=16
⇒phương trình có 2 nghiệm phân biệt
⇒t1=\(\frac{5}{2}\)⇒x+\(\frac{1}{x}\)=\(\frac{5}{2}\)⇒2x2-5x+2=0⇒x=2 hoặc x=\(\frac{1}{2}\)
t2=\(\frac{3}{2}\)⇒x+\(\frac{1}{x}\)=\(\frac{3}{2}\)⇒ 2x2 -3x +2 =0(vô nghiệm)
Vậy x=2 hoặc x=\(\frac{1}{2}\)
\(\frac{1}{2}\)\(\frac{1}{2}\)