Rút gọn biểu thức:\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(=\sqrt{3-2\sqrt{3.5}+5}-\sqrt{3+2\sqrt{3.5}+5}\)
\(=\sqrt{\left(3-5\right)^2}-\sqrt{\left(3+5\right)^2}\)
\(=|3-5|-|3+5|\)
\(=-3+5-3-5\)
\(=-6 \)
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)
\(\Leftrightarrow A=0\)
a)
\(\left(3-\sqrt{15}\right)\sqrt{4+\sqrt{15}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{5+2\sqrt{15}+3}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}\\ =\left(\sqrt{9}-\sqrt{15}\right)\cdot\dfrac{\left|\sqrt{5}+\sqrt{3}\right|}{\sqrt{2}}\)
\(=\sqrt{3}\left(\sqrt{3}-\sqrt{5}\right)\cdot\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}\) (vì \(\sqrt{5}+\sqrt{3}>0\))
\(=\sqrt{3}\cdot\dfrac{3-5}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-2}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-\sqrt{4}}{\sqrt{2}}\\ =-\sqrt{6}\)
b)
\(\sqrt{29-12\sqrt{5}}-\sqrt{24-8\sqrt{5}}\\ =\sqrt{20-2\cdot3\cdot2\sqrt{5}+9}-\sqrt{20-2\cdot2\cdot2\sqrt{5}+4}\\ =\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}-3\right|-\left|2\sqrt{5}-2\right|\)
\(=2\sqrt{5}-3-\left(2\sqrt{5}-2\right)\) (vì \(2\sqrt{5}-3>0;2\sqrt{5}-2>0\))
\(=2\sqrt{5}-3-2\sqrt{5}+2\\ =-1\)
\(a,=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\\ b,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\\ c,=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)
\(\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\frac{\sqrt{2}\sqrt{8-\sqrt{15}}}{\sqrt{2}\left(\sqrt{15}.\sqrt{2}-\sqrt{2}\right)}=\frac{\sqrt{16-2\sqrt{15}}}{\sqrt{2}.\sqrt{2}\left(\sqrt{15}-1\right)}\)
\(=\frac{\sqrt{15-2\sqrt{15}+1}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\frac{1}{2}\)
\(\sqrt{\left(5+2\sqrt{6}\right)}+\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{\left(2+2.\sqrt{2}.\sqrt{3}+3\right)}+\sqrt{3-2\sqrt{3}.\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{3}+\sqrt{5}\)
\(=\sqrt{2}+2\sqrt{3}+\sqrt{5}\)
4: \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\)
\(=2\sqrt{3}\)
4) \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)
5) \(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)
\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(A=\sqrt{8-2\cdot\sqrt{3}\cdot\sqrt{5}}-\sqrt{8+2\cdot\sqrt{3}\cdot\sqrt{5}}\)
\(A=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(A=\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}+\sqrt{3}\right|\)
\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(A=-2\sqrt{3}\)
Cách khác:
\(A^2=\left(\sqrt{8-2\sqrt{15}}\right)^2-2.\sqrt{8-2\sqrt{15}}.\sqrt{8+2\sqrt{15}}+\left(\sqrt{8+2\sqrt{15}}\right)^2\)
\(A^2=8-2\sqrt{15}-2.\sqrt{8^2-\left(2\sqrt{15}\right)^2}+8+2\sqrt{15}\)
\(A^2=16-2.2=12\)\(\Rightarrow\left[{}\begin{matrix}A=2\sqrt{3}\\A=-2\sqrt{3}\end{matrix}\right.\)
Vì \(\sqrt{8-2\sqrt{15}}< \sqrt{8+2\sqrt{15}}\) nên A<0 nên A=\(-2\sqrt{3}\)
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
A=\(\sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{5+2\sqrt{5}.\sqrt{3}+3}\)
A=\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
A=\(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
A=\(-2\sqrt{3}\)
\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(A=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(A=\left|\sqrt{5}-\sqrt{3}\right|-\sqrt{5}-\sqrt{3}\)
\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(A=-2\sqrt{3}\)