K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2019

Bạn tự vẽ hình

Gọi N là trung điểm BC \(\Rightarrow AN=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều ABC cạnh a)

\(SN=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều SBC cạnh a)

\(\Rightarrow AN=SN=SA=\frac{a\sqrt{3}}{2}\Rightarrow\Delta SAN\) đều

\(\left\{{}\begin{matrix}BC\perp SN\\BC\perp AN\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAN\right)\)

\(\left(P\right)\perp BC\Rightarrow\left(P\right)//\left(SAN\right)\)

Từ M kẻ \(MD//AN\left(D\in BC\right)\), từ M kẻ \(ME//SA\left(E\in SB\right)\)

\(\Rightarrow\Delta MDE\) là thiết diện của (P) và chóp

Theo đt Talet: \(\frac{MD}{AN}=\frac{ME}{SA}=\frac{DE}{SN}=\frac{BM}{AB}\)

\(\Rightarrow MD=ME=DE=\frac{AN.BM}{AB}=\frac{\frac{a\sqrt{3}}{2}\left(a-b\right)}{a}=\frac{\sqrt{3}}{2}\left(a-b\right)\)

\(\Rightarrow\Delta MDE\) là tam giác đều cạnh \(\frac{\sqrt{3}}{2}\left(a-b\right)\)

Theo công thức diện tích tam giác đều:

\(S_{MDE}=\frac{\left(\frac{\sqrt{3}}{2}\left(a-b\right)\right)^2\sqrt{3}}{4}=\frac{3\sqrt{3}}{16}\left(a-b\right)^2\)

30 tháng 7 2018

Đáp án C

9 tháng 10 2019

Đáp án C

Ta có diện tích tam giác đều cạnh a là S = a 2 3 4

  ⇒ V S . A B C = 1 3 S A . d t A B C = 1 3 a . a 2 3 4 = a 3 3 12

NV
1 tháng 4 2021

Gọi M là trung điểm SA và O là tâm đáy \(\Rightarrow AO=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\) ; \(AM=\dfrac{a}{2}\)

Qua O kẻ đường thẳng d song song SA, trong mặt phẳng (SAO) qua M kẻ đường thẳng song song AO cắt d tại I

\(\Rightarrow I\) là tâm mặt cầu ngoại tiếp chóp

\(R=IA=\sqrt{IM^2+AM^2}=\sqrt{AO^2+AM^2}=\dfrac{a\sqrt{21}}{6}\)

27 tháng 2 2019

Đáp án B

24 tháng 8 2018

17 tháng 7 2019

Đáp án A

Ta có  S A B C = a 2 3 4 = 3 4 ⇒ V = 1 3 S A . S A B C = 3 12

14 tháng 10 2019

14 tháng 9 2017