K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 5 2019

Để pt có 2 nghiệm pb:

\(\left\{{}\begin{matrix}a\ne0\\\Delta=9\left(a+1\right)^2-4a\left(2a+4\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\left(a+1\right)^2+8>0\end{matrix}\right.\) \(\Rightarrow a\ne0\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-3\left(a+1\right)}{a}\\x_1x_2=\frac{2a+4}{a}\end{matrix}\right.\)

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\left(\frac{-3\left(a+1\right)}{a}\right)^2-\frac{2\left(2a+4\right)}{a}=4\)

\(\Leftrightarrow9a^2+18a+9-4a^2-8a=4a^2\)

\(\Leftrightarrow a^2+10a+9=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-9\end{matrix}\right.\)

Ta có : \(ax^2+3\left(a+1\right)x+2a+4=0\left(a=a;b=3a+3;c=2a+4\right)\)

Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{-3a-3}{a};x_1x_1=\frac{2a+4}{a}\)

Theo bài ra ta có : \(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\) Thay vào ta đc : 

\(\Leftrightarrow\left(\frac{-3a-3}{a}\right)^2-2\left(\frac{2a+4}{a}\right)=4\)

\(\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a+8}{a}=4\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a^2+8a}{a^2}=\frac{4a^2}{a^2}\)

Khử mẫu ta đc : \(9\left(a+1\right)^2-4a^2+8a=4a^2\)

\(\Leftrightarrow9\left(a^2+2a+1\right)-4a^2+8a=4a^2\)

\(\Leftrightarrow9a^2+18a+9-4a^2+8a-4a^2=0\)

\(\Leftrightarrow a^2+27a+9=0\)Ta có : \(\Delta=27^2-4.9=729-36=613>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-27-\sqrt{613}}{2};x_2=\frac{-27+\sqrt{613}}{2}\)

4 tháng 8 2021

\(a,m=3=>x^2+3x-2=0\)

\(\Delta=3^2-4\left(-2\right)=17>0\)

pt có 2 nghiệm pb \(\left[{}\begin{matrix}x1=\dfrac{-3+\sqrt{17}}{2}\\x2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)

b,\(\Delta=m^2-4\left(-2\right)=m^2+8>0\)

=> pt đã cho luôn có 2 nghiệm phân biệt x1,x2 với mọi m

theo vi ét \(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=-2\end{matrix}\right.\)

có \(x1^2x2+x2^2x1=2014< =>x1x2\left(x1+x2\right)=2014\)

\(< =>-2\left(-m\right)=2014< =>m=1007\)

a) Thay m=3 vào phương trình, ta được:

\(x^2+3x-2=0\)

\(\Delta=3^2-4\cdot1\cdot\left(-2\right)=9+8=17\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)

Δ=(-2m)^2-4(m^2-m)

=4m^2-4m^2+4m=4m

Để (1) có 2 nghiệm phân biệt thì 4m>0

=>m>0

x1^2+x2^2=4-3x1x2

=>(x1+x2)^2-2x1x2=4-3x1x2

=>(2m)^2+m^2-m=4

=>4m^2+m^2-m-4=0

=>5m^2-m-4=0

=>5m^2-5m+4m-4=0

=>(m-1)(5m+4)=0

=>m=1 hoặc m=-4/5(loại)

a: a*c=-m^2-3<=-3<0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

b: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)

=>\(\dfrac{x_2+x_1}{x_2x_1}=3\)

=>\(\dfrac{-2}{-m^2-3}=3\)

=>\(\dfrac{2}{m^2+3}=3\)

=>m^2+3=2/3

=>m^2=2/3-3=-7/3(vô lý)

NV
22 tháng 5 2021

\(\Delta'=9-\left(2n-3\right)=12-2n>0\Rightarrow n< 6\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-6x_1+2n-3=0\Leftrightarrow x_1^2-5x_1+2n-4=x_1-1\)

Tương tự ta có: \(x_2^2-5x_2+2n-4=x_2-1\)

Thế vào bài toán:

\(\left(x_1-1\right)\left(x_2-1\right)=-4\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\)

\(\Leftrightarrow2n-3-6+1=-4\Rightarrow n=2\)

23 tháng 5 2021

đã rõ xin cảm ơn