Tìm giá trị lớn nhất của m để bất đẳng thức \(\frac{\sqrt{x}+2}{\sqrt{x}-1}\ge m\) luôn đúng thỏa mãn với mọi giá trị nguyên của x (ĐK:\(x\ge0;x\ne1;x\ne4\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô bố sung cách cm khác ở phân cuối của Ngọc. Cô thấy rằng nó logic hơn, vì phần lập luận dòng cuối của Ngọc có vẻ chưa rõ ràng :)
Sau khi biến đổi đc về dạng \(t^2+t-m\ge0\), áp dụng định lý về dấu tam thức bậc hai ta có:
\(\hept{\begin{cases}1>0\\\Delta< 0\end{cases}\Leftrightarrow1^2+4m< 0\Leftrightarrow m< -\frac{1}{4}}\)
Vậy m nguyên lớn nhất là -1.
Ta có : \(\left(x+1\right)\left(x+2\right)^2\left(x+3\right)\ge m\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+3\right)\right].\left(x+2\right)^2\ge m\)
\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x+4\right)\ge m\)
Đặt \(t=x^2+4x+3\) \(\Rightarrow t\left(t+1\right)\ge m\Leftrightarrow t^2+t-m\ge0\)
\(\Leftrightarrow\left(t^2+2.t.\frac{1}{2}+\frac{1}{4}\right)-\left(m+\frac{1}{4}\right)\ge0\Leftrightarrow\left(t-\frac{1}{2}\right)^2-\left(m+\frac{1}{4}\right)\ge0\)
Ta có \(\left(t-\frac{1}{2}\right)^2\ge0\Rightarrow m+\frac{1}{4}\le0\Rightarrow m\le-\frac{1}{4}\)
Mà m là số nguyên lớn nhất nên m = -1.
Vậy m = -1 thoả mãn đề bài.
Ta có: \(P=A\cdot B\)
\(=\dfrac{\sqrt{x}+7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}+7}{x+3\sqrt{x}+2}\)
Đề thiếu rồi bạn
Ta có: \(3mx>x+2\Rightarrow\left(3m-1\right)x>2\left(1\right)\)
Với \(3m-1=0\Rightarrow0>2\): Vô lý nên \(3m-1\ne0.\)
Với \(3m-1>0\Leftrightarrow\Rightarrow m>\frac{1}{3}\Rightarrow x>\frac{2}{3m-1}.\)
Để (1) đúng với mọi x > 1 suy ra\(1\ge\frac{2}{3m-1}\Rightarrow\frac{2}{3m-1}-1\le0\Rightarrow\frac{3-3m}{3m-1}\le0\)
Do 3m - 1 > 0 nên \(3-3m\le0\Rightarrow m\ge1.\)
Kết hợp điều kiện suy ra \(m\ge1.\)
Với \(3m-1< 0\Leftrightarrow\Rightarrow m< \frac{1}{3}\Rightarrow x< \frac{2}{3m-1}.\)
Khi đó không xảy ra trường hợp \(\forall x>1\) thì \(x< \frac{2}{3m-1}.\)
Vậy trường hợp này loại.
Kết luận \(m\ge1.\)
`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`
Ta cần tìm `max(5/(sqrtx-2))`
Nếu `0<=x<4` thì `5/(sqrtx-2)<0`
Nếu `x>4` thì `5/(sqrtx-2)>0`
Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`
`=>sqrtx-2>=sqrt5-2`
`=>5/(sqrtx-2)<=5/(sqrt5-2)`
`=>C<=1+5/(sqrt5-2)=11+sqrt5`
Vậy `C_(max)=11+sqrt5<=>x=5`