Cho các số nguyên dương nguyên tố cùng nhau x,y.Chứng minh x(2017x+y)/2018x+y là phân số tối giản.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^3-9y^2+9x-6y=1$
$\Leftrightarrow x^3+9x=9y^2+6y+1$
$\Leftrightarrow x(x^2+9)=(3y+1)^2$
Đặt $(x,x^2+9)=d$ thì suy ra $9\vdots d(*)$
$(3y+1)^2=x(x^2+9)\vdots d^2\Rightarrow 3y+1\vdots d$. Mà $(3y+1,3)=1$ nên $(3,d)=1(**)$
Từ $(*);(**)\Rightarrow d=1$, hay $x,x^2+9$ nguyên tố cùng nhau.
$\Rightarrow \frac{x}{x^2+9}$ là phấn số tối giản.
Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))
\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)
\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)
\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)
\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)
Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)
\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)
Mà (x-z)(y-z)=z^2 chính phương
x,y,z thuộc N*
\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương
\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)
với m,n thuộc Z
\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)
\(\Rightarrow z=mn\)
Ta có: (x-z)+(y-z)=(x+y)-2z
\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)
\(\Rightarrow x+y=\left(m+n\right)^2\)
Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)
\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)
\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)
Vậy xyz là số chính phương.
Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))
\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)
\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)
\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)
\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)
Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)
\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)
Mà (x-z)(y-z)=z^2 chính phương
x,y,z thuộc N*
\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương
\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)
với m,n thuộc Z
\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)
\(\Rightarrow z=mn\)
Ta có: (x-z)+(y-z)=(x+y)-2z
\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)
\(\Rightarrow x+y=\left(m+n\right)^2\)
Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)
\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)
\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)
Vậy xyz là số chính phương.
tui la hoc sinh lop 6 lam sao ma viet cai dell nay lam sao :v