Tìm số nguyên biết \(n^2-4n+7\) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
Ta thấy: \(4n^2+14n+7=\left(n+3\right)\left(4n+2\right)+1\)
Do n là số nguyên dương \(\Rightarrow4n^2+14n+7\)và n+3 nguyên tố cùng nhau
\(\Rightarrow\left(n+3\right)\left(4n^2+14n+7\right)\)là 1 SCP thì n+3 và \(4n^2+14n+7\)là 1 số chính phương
Do n nguyên dương \(\Rightarrow\left(2n+3\right)^2\le4n^2+14n+7< \left(2n+4\right)^2\)\(\Rightarrow4n^2+14n+7=\left(2n+3\right)^2\Leftrightarrow n=1\)khi đó n+3=4 là 1 scp
Thử lại với n=1 \(\left(n+3\right)\left(4n^2+14n+7\right)=100\left(tm\right)\)
Vậy n=1
Đặt \(n+1=k^2\left(k\inℕ,k\ge2\right)\) (1) và \(4n+29=l^2\left(l\inℕ,l\ge6\right)\) (2)
(1) \(\Leftrightarrow4n+4=4k^2\) (3)
Từ (2) và (3) \(\Rightarrow l^2-4k^2=25\) \(\Leftrightarrow\left(l-2k\right)\left(l+2k\right)=25\)
Do \(l+2k>0\Rightarrow l-2k>0\). Lại có \(l-2k< l+2k\) nên ta có
\(\left\{{}\begin{matrix}l-2k=1\\l+2k=25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=6\\l=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n+1=36\\4n+29=169\end{matrix}\right.\) \(\Leftrightarrow n=35\) (thỏa)
Vậy \(n=35\) là số nguyên dương duy nhất thỏa mãn ycbt.
Gải sử \(n^2-4n+9\)là số chính phương , khi đó
\(n^2-4n+9=k^2\)
\(=>n^2-4n+4+5=k^2=>\left(n-2\right)^2+5=k^2\)
=>\(\left(n-2\right)^2-k^2=-5\)
-=>\(\left(n-2-k\right)\left(n-2+k\right)=-5\)
sai sai chỗ nào nhỉ
\(n^2-4n+7=k^2\)
\(\Leftrightarrow\left(n-2\right)^2+3=k^2\)
\(\Leftrightarrow k^2-\left(n-2\right)^2=3\)
\(\Leftrightarrow\left(k-n+2\right)\left(k+n-2\right)=3\)
\(\left\{{}\begin{matrix}k-n+2=3\\k+n-2=1\end{matrix}\right.\) \(\Rightarrow n=1\)
\(\left\{{}\begin{matrix}k-n+2=1\\k+n-2=3\end{matrix}\right.\) \(\Rightarrow n=3\)
\(\left\{{}\begin{matrix}k-n+2=-1\\k+n-2=-3\end{matrix}\right.\) \(\Rightarrow n=1\)
\(\left\{{}\begin{matrix}k-n+2=-3\\k+n-2=-1\end{matrix}\right.\) \(\Rightarrow n=3\)
Vậy \(n=\left\{1;3\right\}\)
chuyển vế không đổi dấu à bạn