K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2019

\(x>1\)

\(f'\left(x\right)=\left(2x+2\right)\sqrt{x-1}+\frac{x^2+2x}{2\sqrt{x-1}}=\frac{5x^2+2x-4}{2\sqrt{x-1}}\)

\(f'\left(x\right)\ge0\Leftrightarrow\frac{5x^2+2x-4}{\sqrt{x-1}}\ge0\Leftrightarrow5x^2+2x-4\ge0\)

\(\Rightarrow x>1\)

13 tháng 5 2019

Mình k hiểu bước đầu lắm.Bạn giải thích hộ mình với

9 tháng 11 2017

Chọn C

6 tháng 5 2017

Ta có:f'(x)=4x-1

=>f'(x)\(\sqrt{x^2+1}=2x^2+2x+1\)

<=>(4x-1)\(\sqrt{x^2+1}=2x^2+2x+1\)

Nhận xét: vế phải > 0 nên đk để phương trình có nghiệm:x>\(\dfrac{1}{4}\)

Từ điều kiện trên phương trình

<=>(16x2-8x+1)(x2+1)=4x4+8x3+8x2+4x+1

<=>16x4+16x2-8x3-8x+x2+1=4x4+8x3+8x2+4x+1

<=>12x4-16x3+9x2-12x=0

<=>x(12x3-16x2+9x-12)=0

<=>x(3x-4)(4x2+3)=0

<=>x=0 hoặc x=\(\dfrac{4}{3}\)(do 4x2+3>0)

Vậy...

8 tháng 7 2017

x=0 loại

10 tháng 4 2017

Đáp án D

Đồ thị hàm số y = f ( x ) = x 3 - 3 x + 1  có dạng:

Dựa vào đồ thị ta thấy phương trình f(x) =0 có 3 nghiệm 

3 tháng 11 2019

Quan sát bảng biến thiên ta thấy phương trình này có 2 nghiệm.

Chọn D

14 tháng 11 2017

Đáp án A

5 tháng 7 2018

Đáp án A

Ta có

.

Bảng xét dấu:

Suy ra hàm số có một điểm cực trị.

8 tháng 5 2020

a) \(\frac{2-x}{3}< \frac{3-2x}{5}\)

<=> \(10-5x< 9-6x\)

<=> x < - 1 

Vậy S = { x| x < -1 }

b)

  0 -1