K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(E=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)

3 tháng 4 2016

\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(M=\frac{1}{2}\left(1-\frac{1}{51}\right)\)

M=\(\frac{1}{2}.\frac{50}{51}=\frac{25}{51}\)

3 tháng 4 2016

\(M=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(M=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(M=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{51}\right)\)

\(M=\frac{1}{2}.\frac{50}{51}\)

\(M=\frac{25}{51}\)

6 tháng 5 2018

\(A=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)

\(A=\frac{1}{2}.\frac{16}{51}\)

\(A=\frac{8}{51}\)

6 tháng 5 2018

\(A=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{50}\)

\(2A=\frac{1}{3}-\frac{1}{50}\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{50}\right)\)

\(A=\frac{1}{2}.\frac{1}{3}-\frac{1}{2}.\frac{1}{50}\)

\(A=\frac{1}{6}-\frac{1}{100}=\frac{50}{300}-\frac{3}{300}=\frac{47}{300}\)

15 tháng 4 2017

=1/2(2/3.5 + 2/5.7 +.....+2/49.51

=1/2(1/3 - 1/5+1/5-1/7+....+1/49-1/51)

=1/2(1/3-1/51)

=1/2.16/51

=8/51

HỌC TỐT NHÉ BẠN!

25 tháng 8 2023

sai r m

 

29 tháng 5 2017

\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

\(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{51}\right)\)

\(=\dfrac{1}{2}.\dfrac{16}{51}=\dfrac{8}{51}\)

Vậy \(C=\dfrac{8}{51}\)

29 tháng 5 2017

\(\Rightarrow C=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

\(C=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(C=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{51}\right)\)

\(C=\dfrac{1}{2}.\dfrac{15}{51}\)

\(C=\dfrac{8}{51}\)

5 tháng 5 2023

Olm sẽ hướng dẫn các em phương pháo giải tổng quát dạng này như sau:

Bước 1 phân tích số đã cho thành tích của các số nguyên tố

Bước 2 nhóm các thừa số nguyên tố thành 1 nhóm ta sẽ được tích của hai số cần tìm

2499 = 3 \(\times\) 7 \(\times\) 7 \(\times\) 17

2499 = ( 7 \(\times\) 7)  \(\times\) ( 3 \(\times\) 17)

2499 = 49 \(\times\) 51 

30 tháng 4 2017

a) \(A=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

\(\Leftrightarrow A=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)

\(\Leftrightarrow\dfrac{5}{3}.\dfrac{102}{103}\)

\(\Leftrightarrow\) \(A=\dfrac{170}{103}\)

b) \(B=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

\(B=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{51}\right)\)

\(B=\dfrac{1}{2}.\dfrac{16}{51}\)

\(B=\dfrac{8}{51}\)

2 tháng 6 2017

A = \(\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

A = \(\dfrac{5}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

A = \(\dfrac{5}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{100}+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{100}-\dfrac{1}{100}\right)-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-0-0-...-0-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\left[\dfrac{103}{103}-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\dfrac{102}{103}\)

A = \(\dfrac{170}{103}\)

B = \(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

B = \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

B = \(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)

B = \(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{49}-\dfrac{1}{49}\right)-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-0-0-...-0-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\left[\dfrac{17}{51}-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\dfrac{16}{51}\)

B = \(\dfrac{8}{51}\)

4 tháng 5 2023

\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
\(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)
\(=\dfrac{1}{3}-\dfrac{1}{51}\)
\(=\dfrac{16}{51}\)

4 tháng 5 2023

Làm sao để tách 1/2499 v

 

24 tháng 5 2022

Tham khảo

=1/2(2/3.5 + 2/5.7 +.....+2/49.51

=1/2(1/3 - 1/5+1/5-1/7+....+1/49-1/51)

=1/2(1/3-1/51)

=1/2.16/51

=8/51

24 tháng 5 2022

Tham khảo

=1/2(2/3.5 + 2/5.7 +.....+2/49.51

=1/2(1/3 - 1/5+1/5-1/7+....+1/49-1/51)

=1/2(1/3-1/51)

=1/2.16/51

=8/51