1/10+1/40+1/88+...+1/(x+2)(x+5)=3/20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+...+\dfrac{1}{\left(x+2\right)\left(x+5\right)}=\dfrac{3}{20}\)
\(\Rightarrow\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{\left(x+2\right)\left(x+5\right)}=\dfrac{3}{20}\)
\(\Rightarrow\dfrac{1}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{\left(x+2\right)\left(x+5\right)}\right)=\dfrac{3}{20}\)
\(\Rightarrow\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+..+\dfrac{3}{\left(x+2\right)\left(x+5\right)}=\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{x+2}-\dfrac{1}{x+5}=\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+5}=\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{x+5}=\dfrac{1}{2}-\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{x+5}=\dfrac{1}{20}\)
\(\Rightarrow x+5=20\)
\(\Rightarrow x=20-5\)
\(\Rightarrow x=15\)
\(\text{Ta có: }\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+.....+\frac{3}{\left(x+2\right)\left(x+5\right)}=\frac{3}{20}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.....+\frac{1}{\left(x+2\right)}-\frac{1}{\left(x+5\right)}=\frac{3}{20}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{\left(x+5\right)}=\frac{3}{20}\)
\(\Rightarrow\frac{1}{\left(x+5\right)}=\frac{1}{2}-\frac{3}{20}\)
Hướng dẫn giải:
a) 3 x (20 – 5)
Cách 1:
3 x (20 – 5) = 3 x 15 = 45
Cách 2:
3 x (20 – 5) = 3 x 20 – 3 x 5 = 60 – 15 = 45
b) 20 x (40 – 1)
Cách 1:
20 x (40 – 1) = 20 x 39 = 780
Cách 2:
20 x (40 – 1) = 20 x 40 – 20 x 1 = 800 – 20 = 780
làm lại
ta có : \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{\left(x+2\right)\left(x+5\right)}=\frac{3}{20}\)
=>\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{\left(x+2\right)\left(x+5\right)}=\frac{3}{20}\)
=>\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+....+\frac{3}{\left(x+2\right)\left(x+5\right)}=\frac{9}{20}\)
=>\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{x+2}-\frac{1}{x+5}=\frac{9}{20}\)
=>\(\frac{1}{2}-\frac{1}{x+5}=\frac{9}{20}\)
=>\(\frac{1}{x+5}=\frac{1}{2}-\frac{9}{20}\)
=>\(\frac{1}{x+5}=\frac{1}{20}\)
=>\(x+5=20\)
=>\(x=20-5\)
=>\(x=15\)
ta có : \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+....+\frac{1}{\left(x+2\right)\left(x+5\right)}=\frac{3}{20}\)
=>\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{20}\)
=>\(3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{\left(x+2\right)\left(x+3\right)}\right)=3.\frac{3}{20}\)
=>\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+....+\frac{3}{\left(x+2\right)\left(x+3\right)}=\frac{9}{20}\)
=>\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{x+2}-\frac{1}{x+3}=\frac{9}{20}\)
=>\(\frac{1}{2}-\frac{1}{x+3}=\frac{9}{20}\)
=>\(\frac{1}{x+3}=\frac{1}{2}-\frac{9}{20}\)
=>\(\frac{1}{x+3}=\frac{1}{20}\)
=>\(x+3=20\)
=>\(x=20-3\)
=>\(x=17\)