Cho x, y, z thỏa mãn các điều kiện xy + 2( yz + zx ) = 5. Tìm giá trị nhỏ nhất của biểu thức:
\(S=3\left(x^2+y^2\right)+4z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ thế này ạ
xy + 2(yz + xz) =5 => xy + 2yz + 2xz =5
Mình áp dụng bất đẳng thức này nhé :)
Ta có: \(\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow x^2+y^2\ge2xy\forall x,y\)
\(\Rightarrow\frac{1}{2}\left(x^2+y^2\right)\ge xy\forall x,y\)(1)
Chứng minh tương tự ta được \(y^2+z^2\ge2yz\forall y,z\)(2)
\(x^2+z^2\ge2xz\forall x,z\)(3)
Cộng vế (1) (2) (3) ta được \(\frac{1}{2}\left(x^2+y^2\right)+y^2+z^2+x^2+z^2\ge xy+2yz+2xz\forall x,y,z\)
\(\Rightarrow\frac{1}{2}x^2+\frac{1}{2}y^2+x^2+y^2+z^2+z^2\)\(\ge5\)\(\forall x,y,z\)
\(\Rightarrow\frac{3}{2}x^2+\frac{3}{2}y^2+2z^2\ge5\forall x,y,z\)
nhân cả 2 vế với 2 nè
\(\Rightarrow3x^2+3y^2+4z^2\ge10\forall x,y,z\)
\(\Rightarrow3\left(x^2+y^2\right)+4z^2\ge10\forall x,y,z\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\y=z;x=z\\xy+2\left(yz+xz\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2+2.\left(x^2+x^2\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\5x^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2=1\end{cases}\Leftrightarrow}}\)x=y=z = 1 hoăc
Vậy giá trị nhỏ nhất của biểu thức là 10 tại x=y=z=1;-1
Bài này có nhiều cách, xin phép làm 2 cách đơn giản. Tuy nhiên ở cách 2 tính sai chỗ nào thì tự check:) (chắc ko sai đâu:v đừng lo quá mức)
Cách 1: \(x^2+y^2\ge2xy\)
\(2x^2+2z^2\ge4xz\)
\(2y^2+2z^2\ge4yz\)
Cộng theo vế 3 bđt trên kết hợp giả thiết suy ra \(S\ge10\)
Cách 2:
Xét \(S-2\left[xy+2yz+2zx\right]\)
\(=\left(x-y\right)^2+2\left(y-z\right)^2+2\left(z-x\right)^2\ge0\)
Do đó...
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24
mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không
\(S=x^2+y^2+2\left(x^2+z^2+y^2+z^2\right)\)
\(\Rightarrow S\ge2xy+2\left(2xz+2yz\right)=2\left[xy+2\left(xz+yz\right)\right]=10\)
\(\Rightarrow S_{min}=10\) khi \(x=y=z=1\)
ta có \(xy\le\left(\frac{x+y}{2}\right)^2\) và \(yz+xz=z\left(x+y\right)\le\frac{z^2+\left(x+y\right)^2}{2}\)
\(\Rightarrow5=xy+yz+xz\le\left(\frac{x+y}{2}\right)^2+\frac{z^2+\left(x+y\right)^2}{2}=\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\)
Xét \(3x^2+3y^2+z^2\ge\frac{3}{2}\left(x+y\right)^2+z^2=2\left(\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\right)\ge2\cdot5=10\)
dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\z=x+y\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\pm1\\z=\pm2\end{cases}}}\)
Câu hỏi của Phạm Nguyễn Phương UYên - Toán lớp 8 | Học trực tuyến
Nằm ngay phía dưới