K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 5 2019

ĐKXĐ \(x\ge0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+2\sqrt{x^2+7x}+2x+7=42\)

Đặt \(\sqrt{x}+\sqrt{x+7}=a>0\Rightarrow a^2=2x+7+2\sqrt{x^2+7x}\)

\(a+a^2=42\Leftrightarrow a^2+a-42=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-7< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\sqrt{x+7}=6\Leftrightarrow2x+7+2\sqrt{x^2+7x}=36\)

\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\) \(\left(x\le\frac{29}{2}\right)\)

\(\Leftrightarrow4\left(x^2+7x\right)=\left(29-2x\right)^2\)

\(\Leftrightarrow4x^2+28x=841-116x+4x^2\)

\(\Leftrightarrow144x=841\)

\(\Rightarrow x=\frac{841}{144}\)

9 tháng 5 2019

thanks

27 tháng 11 2018

ĐK \(x\ge0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+x+2\sqrt{x\left(x+7\right)}+x+7=42\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+7}\right)+\left(\sqrt{x}+\sqrt{x+7}\right)^2=42\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+7}\right)^2+\left(\sqrt{x}+\sqrt{x+7}\right)-42=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{x+7}=6\\\sqrt{x}+\sqrt{x+7}=-7\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+7}\right)^2=36\)

\(\Leftrightarrow2x+7+2\sqrt{x\left(x+7\right)}=36\)

\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\)

bình phương 2 vế

\(\Leftrightarrow4\left(x^2+7x\right)=4x^2-116x+841\)

\(\Leftrightarrow4x^2+28x=4x^2-116x+841\)

\(\Leftrightarrow144x=841\Leftrightarrow x=\dfrac{841}{144}\)

29 tháng 5 2017

định dạng kiểu j z ? gửi lại bài đi

4 tháng 11 2017

minh chua hoc den cai nay. SORY nhe 

NV
18 tháng 6 2020

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow2x+7+2\sqrt{x^2+7x}+\sqrt{x}+\sqrt{x+7}-42=0\)

Đặt \(\sqrt{x}+\sqrt{x+7}=t>0\)

\(\Rightarrow2x+7+2\sqrt{x^2+7x}=t^2\)

Pt trở thành:

\(t^2+t-42=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\sqrt{x+7}=6\)

\(\Leftrightarrow2x+7+2\sqrt{x^2+7x}=36\)

\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\) (\(x\le\frac{29}{2}\))

\(\Leftrightarrow4\left(x^2+7x\right)=\left(29-2x\right)^2\)

\(\Leftrightarrow144x-841=0\Rightarrow x=\frac{841}{144}\)

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm

 

7 tháng 11 2019

a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)

\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)

đặt\(x^2+x+1=t\left(t>0\right)\)

\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)

bình phương 2 vế pt trở thành:

\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)

\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m

vậy pt vô nghiệm

NV
7 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)

\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)

\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))

\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)

\(\Leftrightarrow11a^2+6a-25=0\)

Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó

b/

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)

\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)

\(\Leftrightarrow\sqrt{a^2+3a}=2\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\)

NV
8 tháng 4 2021

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
8 tháng 4 2021

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)