K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

Ta có : \(\left|4x+3\right|\ge0\) với mọi x

\(\Rightarrow-\left|4x+3\right|\le0\)  với mọi x

\(\Rightarrow-\left|4x+3\right|+2014\le0+2014\) với mọi x

\(\Rightarrow M\le2014\) 

Dấu ''='' xảy ra khi :

| 4x + 3 | = 0

\(\Rightarrow4x+3=0\) 

\(\Rightarrow4x=-3\) 

\(\Rightarrow x=-\frac{3}{4}\)

Vậy giá trị lớn nhất của biểu thức M là 2014 khi \(x=-\frac{3}{4}\)

Nhớ t.i.c.k cho mình nha!

19 tháng 8 2023

Tìm giá trị nhỏ nhất của biểu thức:

a) Ta có: 

\(M=2x^2+4x+7\)

\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)

\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)

\(M=2\left(x+1\right)^2+5\)

Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:

\(M=2\left(x+1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra:

\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy: \(M_{min}=5\) khi \(x=-1\)

b) Ta có:

\(N=x^2-x+1\)

\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=" xảy ra: 

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

19 tháng 8 2023

Tìm giá trị lớn nhất của biểu thức

a) Ta có: 

\(E=-4x^2+x-1\)

\(E=-\left(4x^2-x+1\right)\)

\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)

\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)

Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên 

\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)

Dấu "=" xảy ra:

\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)

\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)

b) Ta có:

\(F=5x-3x^2+6\)

\(F=-3x^2+5x-6\)

\(F=-\left(3x^2-5x-6\right)\)

\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)

Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)

Dấu "=" xảy ra:

\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)

Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)

11 tháng 1 2022

\(M=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1.\)

Ta có: \(\left(x-2\right)^2\ge0\) \(\forall x\in R.\)

           \(1>0.\)

\(\Rightarrow\left(x-2\right)^2+1\ge1.\Rightarrow M\ge1.\)

Dấu \("="\) xảy ra. \(\Leftrightarrow\left(x-2\right)^2+1=1.\Leftrightarrow\left(x-2\right)^2=0.\Leftrightarrow x=2.\)

Vậy GTNN của M = 1 khi x = 2.

11 tháng 1 2022

\(M=x^2-4x+4+1\)=\(\left(x-2\right)^2+1\)

vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2+1\ge1\)

=>\(M\ge1\) dấu''='' xảy ra  khi M = 1<=>x-2=0<=>x=2

kl:\(M_{min}=1\) khi và chỉ khi x =2

 

9 tháng 8 2021

Giúp mik nha
Mik đang cần gấp

9 tháng 8 2021

\(M=6x-x^2+2\\ M=-\left(x^2-6x-2\right)\\ M=-\left(x^2-6x+9-11\right)\\ M=-\left(x-3\right)^2+11\)

Có \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\\ \Rightarrow-\left(x-3\right)^2+11\le11\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\\ \Leftrightarrow x=3\)

Vậy \(max_M=11\Leftrightarrow x=3\)

29 tháng 6 2015

A=|4x-1/4|+2016

Ta có: |4x-1/4|>=0

=>|4x-1/4|+2016>=2016 Hay A>=2016

Nên giá trị nhỏ nhất của A là 2016 khi

4x-1/4=0

4x=0+1/4

4x=1/4

x=1/4:4

x=1/16

Vậy GTNN của A là 2016 khi x=1/16

B=2014-|3x-1/5|

Ta có: |3x-1/5|>=0

2014-|3x-1/5|<=2014 hay B<=2014

Nên GTLN của B là 2014 khi:

3x-1/5=0

3x=0+1/5

3x=1/5

x=1/5:3

x=1/15

Vậy GTNN của B là 2014 khi x=1/15

29 tháng 6 2015

GTTĐ luôn >= 0 

Áp dụng ta có

A = l 4x -1/4l + 2016 Nhỏ hơn bằng 0 + 2014 = 2014 

Vậy GTNN của A là 2014 khi 4x - 1/4 = 0 => x = ...

TA có

B = 2014 - l 3x - 1/5l lớn hơn bằng 2014 - 0 = 2014

Vậy GTLN là 2014 khi 3x - 1/5 = 0