K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

Ta có: \(\frac{3n+4}{3n-2}=\frac{2n-2+6}{3n-2}=1+\frac{6}{3n-2}\)

Để \(\frac{3n+4}{3n-2}\) nguyên thì \(\frac{6}{3n-2}\) nguyên

\(\Rightarrow6⋮\left(3n-2\right)\)

\(\Leftrightarrow3n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Mà 3n - 2 lẻ nên \(3n-2\in\left\{\pm1;\pm3\right\}\)

Lập bảng rồi tìm giá trị là xong

10 tháng 5 2022

2n+33n−1∈Z2n+33n−1∈Z

<=> 2n + 3    chia hết cho    3n - 1

<=> 6n + 9    chia hết cho     3n - 1

<=> (6n - 2) + 11    chia hết cho    3n - 1

<=>  2(3n - 1) + 11    chia hết cho    3n - 1

<=> 11    chia hết cho 3n - 1

<=> 3n - 1 thuộc Ư(11) = {±1;±11±1;±11}

Thay từng giá trị vào 3n - 1 để tìm n 

Rồi xét giá trị của n có nguyên hay không 

Nếu không thì vứt

Nếu là số nguyên thì nhận

10 tháng 5 2022

\(\dfrac{6n+9}{3n-1}=\dfrac{2\left(3n-1\right)+11}{3n-1}=2+\dfrac{11}{3n-1}\)

\(\Rightarrow3n-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

 

3n-1 1 -1 11 -11
n loại 0 4 loại

 

 

Để A nguyên thì 3n+3-1 chia hết cho n+1

=>\(n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-2\right\}\)

21 tháng 2 2018

a) Để \(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\)là số nguyên . 

=> \(\frac{5}{3n+2}\)là 1 số nguyên

=> 5 chia hết cho 3n+2 .

=> 3n+2 thuộc Ư(5)=\(\left\{\pm1;\pm5\right\}\)

Từ đó, ta lập bảng   ( khúc này bn tự làm)

Vậy...

b) Để \(\frac{5}{3n+2}\)đạt giá trị lớn nhất:

=>  3n+2 đạt giá trị tự nhiên nhỏ nhất

=> 3n đạt giá trị tự nhiên nhỏ nhất

=> n là số tự nhiên nhỏ nhấ

<=> n = 0 

21 tháng 2 2018

cảm ơn bạn nha.

23 tháng 4 2017

\(=\frac{3n-2+6}{3n-2}=\frac{3n-2}{3n-2}+\frac{6}{3n-2}\) 

\(\Rightarrow\)3n-2\(\in\) Ư(6)

3n-2=-1

3n=-1+2

3n=1 loại

3n-2=1

3n=1+2

3n=3

n=1 chọn 

bạn tự làm tiếp nhé

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

18 tháng 5 2016

a)\(A=\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)-5}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}\in Z\)

=>5 chia hết 3n+1

=>3n+1\(\in\){1,-1,5,-5}

=>n\(\in\){0;-2}vì x nguyên

phần kia tương tự