1. Giải hệ phương trình và phương trình sau:
a) \(\hept{\begin{cases}2x-y=5\\x+y=4\end{cases}}\)b) \(16x^5-8x^3+x=0\)
2. Rút gọn biểu thức: \(A=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{4}+\frac{1}{\sqrt{5}-1}\)
\(B=\frac{4}{3+\sqrt{5}}-\frac{8}{1+\sqrt{5}}+\frac{15}{\sqrt{5}}\)
GIẢI NHANH GIÚP VỚI Ạ THANKS !!!
1) a) \(\hept{\begin{cases}2x-y=5\\x+y=4\end{cases}}\)<=> \(\hept{\begin{cases}3x=9\\x+y=4\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\3+y=4\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=1\end{cases}}\)
\(16x^5-8x^3+x=0\)(1) <=> \(x\left(16x^4-8x^2+1\right)=0\)
<=> \(x_1=0\)hoac \(16x^4-8x^2+1=0\)
\(16x^4-8x^2+1=0\)
Dat \(x^2=t\left(t\ge0\right)\)phuong trinh tro thanh
\(16x^2-8x+1=0\)
\(\left(a=16;b'=\frac{b}{2}=-\frac{8}{2}=-4:c=1\right)\)
\(\Delta'=b'^2-ac=\left(-4\right)^2-16\cdot1=16-16=0\)
Phuong trinh co nghiem kep t1 =t2=\(-\frac{b'}{a}=-\frac{-4}{1}=4\)(thoa)
Voi t=4 ta duoc
\(x^2=4\)<=> \(x_2=2,x_3=-2\)
Vay nghiem cua phuong trinh (1) la \(x_1=0,x_2=2,x_3=-2\)