K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=A\)

ta có :\(\frac{1}{2^2}=\frac{1}{2\cdot2}=\frac{1}{4}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(...\)

\(\frac{1}{1990^2}=\frac{1}{1990\cdot1990}< \frac{1}{1989\cdot1990}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2\cdot3}+...+\frac{1}{1989\cdot1990}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)

\(\Rightarrow A< \frac{3}{4}\left(ĐPCM\right)\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)

hk tốt #

2 tháng 5 2019

Ta có \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{1990^2}< \frac{1}{1989.1990}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)

                                                                     \(< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)

                                                                    \(< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)

\(\Rightarrow\)Bài toán được chứng minh

3 tháng 5 2018

Câu a) Mik chữa lại một chút 

Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)\(\frac{1}{3^2}< \frac{1}{2\cdot3}\);.......; \(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

Suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

Suy ra: \(VT< \frac{1}{1}-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy : \(VT+1< 1+1=2\)

26 tháng 4 2016

x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{5}{6}\) -\(\frac{3}{4}\) + \(\frac{2}{3}\) -\(\frac{1}{2}\)

x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{10}{12}\)-\(\frac{9}{12}\)+\(\frac{8}{12}\)-\(\frac{6}{12}\)

x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\)\(\frac{1}{4}\)=> x. (\(\frac{1}{2}\)\(\frac{2}{3}\) + \(\frac{3}{4}\)\(\frac{5}{6}\)) = \(\frac{1}{4}\)=> x.( \(\frac{6}{12}\)\(\frac{8}{12}\)+\(\frac{9}{12}\)-\(\frac{10}{12}\))= \(\frac{1}{4}\)=> x. \(\frac{-1}{4}\)=\(\frac{1}{4}\)=> x = \(\frac{1}{4}\)\(\frac{-1}{4}\)=> x = -1
26 tháng 4 2016

=>x.(1/2-2/3+3/4)=1/4

=>x.7/12=1/4

=>x=1/4:7/12

=>x=1/4.12/7

=>x=3/7

 

7 tháng 7 2016
  • 1/2.2<1/1.2                     
  • 1/3.3<2.3 
  •         ... 
  •        1/1990.1990<1/1990.1989 
  • => 1/2^2+... +1/1990^2< 1/1.2+1/2.3+...+ 1/1990+1989 

=>1/2^2+...+1/1990^2<1/1990<3/4 

3 tháng 12 2015

\(\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{2014}-\frac{1}{2015}\)

\(=\frac{1}{2}-\frac{1}{2015}=\frac{2013}{4030}=>A=\frac{2013}{4030}:2=\frac{2013}{2015}\)

tick nhe

3 tháng 12 2015

Hình như đây là bài lớp 6 mà