Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) Mik chữa lại một chút
Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2}\); \(\frac{1}{3^2}< \frac{1}{2\cdot3}\);.......; \(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
Suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
Suy ra: \(VT< \frac{1}{1}-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy : \(VT+1< 1+1=2\)
- 1/2.2<1/1.2
- 1/3.3<2.3
- ...
- 1/1990.1990<1/1990.1989
- => 1/2^2+... +1/1990^2< 1/1.2+1/2.3+...+ 1/1990+1989
=>1/2^2+...+1/1990^2<1/1990<3/4
xét vế trái
=(1+1/3+1/5+...+1/1989)-(1/2+1/4+...+1/1990)
=(1+1/2+1/3+1/4+...+1/1990)-2.(1/2+1/4+...+1/1990)
=(1+1/2+1/3+1/4+...+1/1990)-!1+1/2+1/3+1/4+...+1/995)
=1/996+1/997+.../1+1990
vậy 1-1/2+1/3-1/4+...-1/1990=1/996+1/997+...+1/1990
cmr 1-$\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.......-\frac{1}{1990}=\frac{1}{996}+\frac{1}{997}+\frac{1}{998}+.......+\frac{1}{1990}$
\(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}\cdot\frac{17}{4}-28\cdot\frac{4}{3}\right):\frac{7}{4}\)
\(=\frac{59}{15}-\frac{29}{4}:\frac{7}{4}=\)\(\frac{59}{15}-\frac{29}{7}=\frac{-22}{105}\)
B = \(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}x\frac{17}{4}-2x\frac{4}{3}\right):\frac{7}{4}\)
= \(\frac{59}{10}x\frac{2}{3}-\left(\frac{119}{12}-\frac{8}{3}\right)x\frac{4}{7}\)
= \(\frac{59}{15}-\frac{29}{4}x\frac{4}{7}=\frac{59}{15}-\frac{29}{7}\)
= \(\frac{-22}{105}\)
C = \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
= \(1-\frac{1}{7}=\frac{6}{7}\)
bạn tham khảo ở đây https://olm.vn/hoi-dap/detail/5694735153.html
Yêu cầu của bài là gì vậy. Tính A? hay Chứng minh A < 2 hoặc chứng minh A không phải là số nguyên
Chứng minh A < 2
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
Vậy A < 2
Đặt \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=A\)
ta có :\(\frac{1}{2^2}=\frac{1}{2\cdot2}=\frac{1}{4}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(...\)
\(\frac{1}{1990^2}=\frac{1}{1990\cdot1990}< \frac{1}{1989\cdot1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2\cdot3}+...+\frac{1}{1989\cdot1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\left(ĐPCM\right)\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)
hk tốt #
Ta có \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{1990^2}< \frac{1}{1989.1990}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
\(< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)
\(\Rightarrow\)Bài toán được chứng minh