giả sử x1 x2 là nghiệm của phương trình x^2-(m+2)x+m^2+1=0. Khi đó giá trị lớn nhất của biểu thức P=4(x1+x2)-x1x2 bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)]^2-(m^2+4) >= 0`
`<=>m^2+2m+1-m^2-4 >= 0`
`<=>m >= 3/2`
Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`
Ta có:`C=x_1+x_2-x_1.x_2+3`
`<=>C=2m+2-m^2-4+3`
`<=>C=-m^2+2m+1`
`<=>C=-(m^2-2m+1)+2`
`<=>C=-(m-1)^2+2`
Vì `-(m-1)^2 <= 0 AA m >= 3/2`
`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`
Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)
Vậy không tồn tại `m` để `C` có `GTLN`
3:
\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)
=4m^2-4m+1+8m+44
=4m^2+4m+45
=(2m+1)^2+44>=44>0
=>Phương trình luôn có hai nghiệm pb
|x1-x2|<=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)
=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)
=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)
=>0<=4m^2+4m+45<=16
=>4m^2+4m+29<=0
=>(2m+1)^2+28<=0(vô lý)
Áp dụng hệ thức vi ét:
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=m-1\end{matrix}\right.\)
⇒ \(\left(x_1+x_2\right)^2-2x_1.x_2=m^2-2\left(m-1\right)\)
\(\Leftrightarrow x_1^2+x_2^2=\left(m-1\right)^2\)
\(Min\left(x_1^2+x_2^2=0\right)\Leftrightarrow m=1\)
\(x^2-2\left(m-1\right)x+m-5=0\)
Xét \(\Delta=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)\(=\left(2x-3\right)^2+15>0\forall m\)
=>Pt luôn có hai nghiệm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
Đặt \(A=\left|x_1-x_2\right|\)
\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)
\(=\left(2m-3\right)^2+15\ge15\)
\(\Rightarrow A\ge\sqrt{15}\)
\(A_{min}=\sqrt{15}\Leftrightarrow m=\dfrac{3}{2}\)
a, Thay m=0 vào pt ta có:
\(x^2-x+1=0\)
\(\Rightarrow\) pt vô nghiệm
b, Để pt có 2 nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1 ≠ 0 và
∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ; ∀ m
Nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8
Xét
A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33
Dấu “=” xảy ra khi m = 0
Vậy m = 0 là giá trị cần tìm
Đáp án: B
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
\(\Delta=\left(m+2\right)^2-4m^2-4=4m-3m^2\ge0\Rightarrow0\le m\le\frac{4}{3}\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m^2+1\end{matrix}\right.\)
\(P=4\left(x_1+x_2\right)-x_1x_2=4\left(m+2\right)-\left(m^2+1\right)\)
\(P=-m^2+4m+7\)
Xét trên đoạn \(\left[0;\frac{4}{3}\right]\) ta có: \(P\left(0\right)=7\); \(P\left(\frac{4}{3}\right)=\frac{95}{9}\)
\(\Rightarrow P_{max}=\frac{95}{9}\) khi \(m=\frac{4}{3}\)