Tìm 1 số biết rằng số đó chia cho 5 dư 2 , chia cho 7 dư 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là x
ta có \(\hept{\begin{cases}x+1\text{ chia hết cho 2,3,4,5,6}\\x\text{ chia hết cho 7}\end{cases}}\) vậy x +1 là bội của 60 và x là bội của 7
\(\Rightarrow\hept{\begin{cases}x=60k-1\\x=7h\end{cases}\Leftrightarrow60k-1=7h\Leftrightarrow60\left(k-2\right)=7\left(h-17\right)}\)
vậy k-2 là bội của 7 , và giá trị nhỏ nhất của k là 2
Vậy giá trị nhỏ nhất của x là \(2\times60-1=119\)
Vì chia cho 3 dư 2 ; cho 5 dư 4 và 7 dư 6 nên số đó thêm 1 đơn vị sẽ chia hết cho 3 ; 5 và 7
Mà số lớn nhất chia hết cho 3 ; 5 và 7 là 945
Vậy số cần tìm là:
945 − 11 == 944
ĐS: 944
Đáp án:
Số cần tìm là 944.
Giải thích các bước giải:
Số cần tìm chia cho 3 dư 2, chia 5 dư 4, chia 7 dư 6.
Nếu thêm số đó 1 đơn vị thì số mới chia hết cho 3, 5, 7.
Các số có ba chữ số chia hết cho 3, 5, 7 là : 105; 210; 315; ...; 945.
Số lớn nhất có ba chữ số chia hết cho 3, 5, 7 là 945.
Vậy số cần tìm là : 945 - 1 = 944.
Gọi số cần tìm là a
=>a+2 thuộc BC(4,5,6)
Sau đó, khi bn tìm đc a+2 thì bn tìm a Xét các số trong tập hợp đó số nào chia hết cho 7 thì lấy
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
là số 57 vì 57 chi 5 dư 2 và chia 7 dư 6
goi so can tim la x
De x chia het cho 5 : x+3 ; x+8
De x chia het cho 7 : x+1 ; x+8
ta thay x+8 la BCNN(5;7)
BCNN(5;7)=5 x 7= 35
=>x+8=35
x=27
vay so can tim la 27