Tính tổng
\(\frac{5}{5\cdot7}+\frac{5}{7\cdot9}+...+\frac{5}{59\cdot61}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{59.61}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\frac{56}{305}\)
\(=\frac{84}{305}\)
tk cho minh nhe >.<
Ta có: \(\frac{2}{3}\times\left(\frac{3}{5.7}+\frac{3}{7.9}+.....+\frac{3}{59.61}\right):\frac{2}{3}\)
\(\Rightarrow\left(\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{59.61}\right):\frac{2}{3}\)
\(=\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\right):\frac{2}{3}\)
\(\Rightarrow\left(\frac{1}{5}-\frac{1}{61}\right):\frac{2}{3}=\frac{56}{305}:\frac{2}{3}=\frac{84}{305}\)
\(=\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{59.61}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{59}-\frac{1}{61}\right)\)
=\(2.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\left(\frac{36}{505}\right)\)
\(=\frac{72}{505}\)
TK nha !!
Ta có : \(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+....+\frac{4}{59.61}\)
\(=2\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+.....+\frac{2}{59.61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{59}-\frac{1}{61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\frac{56}{305}=\frac{112}{305}\)
\(\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{59.61}\)
\(=\)\(\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{59.61}\right)\)
\(=\)\(\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\)\(\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\)\(\frac{3}{2}.\frac{56}{305}\)
\(=\)\(\frac{84}{305}\)
Chúc bạn học tốt ~
A = 2/3*5 + 2/5*7 + 2/7*9 + ... + 2/97*99
A = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99
A = 1/3 - 1/99
A = 32/99
\(A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{3}-\frac{1}{99}\)
\(A=\frac{32}{99}\)
a.\(\frac{3\cdot4\cdot7}{12\cdot8\cdot9}\)= \(\frac{3\cdot4\cdot7}{3\cdot4\cdot8\cdot9}\)= \(\frac{7}{72}\)
b. \(\frac{4\cdot5\cdot6}{12\cdot10\cdot8}\)= \(\frac{4\cdot5\cdot2\cdot3}{3\cdot4\cdot5\cdot2\cdot8}\)= \(\frac{1}{8}\)
c.\(\frac{5\cdot6\cdot7}{12\cdot14\cdot15}\)= \(\frac{5\cdot6\cdot7}{2\cdot6\cdot2\cdot7\cdot3\cdot5}\)= \(\frac{1}{12}\)
a, \(\frac{3.4.7}{12.8.9}\)= \(\frac{3.4.7}{3.4.8.9}\)= \(\frac{7}{72}\)
b, \(\frac{4.5.6}{12.10.8}\)= \(\frac{4.5.6}{3.4.2.5.8}\)= \(\frac{1}{8}\)
c, \(\frac{5.6.7}{12.14.15}\)= \(\frac{5.6.7}{2.6.2.7.3.5}\)= \(\frac{1}{12}\)
\(\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{5}{53\cdot55}\)
\(=\frac{3}{2}\cdot\left(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{53\cdot55}\right)\)
\(=\frac{3}{2}\cdot\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=\frac{3}{2}\cdot\left(\frac{1}{5}-\frac{1}{55}\right)\)
\(=\frac{3}{2}\cdot\left(\frac{11}{55}-\frac{1}{55}\right)\)
\(=\frac{3}{2}\cdot\frac{10}{55}\)
\(=\frac{3}{2}\cdot\frac{2}{11}\)
\(=\frac{3}{11}\)
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(=\frac{1}{1.3}-\frac{1}{11.13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
=>\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
=>\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
=>\(S=\frac{1}{2}.\left(1-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10}\right)\)
=>\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
=>\(S=\frac{4}{9}-\frac{1}{5}\)
=>\(S=\frac{11}{45}\)
\(\frac{5}{5.7}+\frac{5}{7.9}+...+\frac{5}{59.61}\)
\(=\frac{5}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=\frac{5}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\frac{5}{2}\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{5}{2}.\frac{56}{305}=\frac{28}{61}\)