Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{59.61}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\frac{56}{305}\)
\(=\frac{84}{305}\)
tk cho minh nhe >.<
Ta có: \(\frac{2}{3}\times\left(\frac{3}{5.7}+\frac{3}{7.9}+.....+\frac{3}{59.61}\right):\frac{2}{3}\)
\(\Rightarrow\left(\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{59.61}\right):\frac{2}{3}\)
\(=\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\right):\frac{2}{3}\)
\(\Rightarrow\left(\frac{1}{5}-\frac{1}{61}\right):\frac{2}{3}=\frac{56}{305}:\frac{2}{3}=\frac{84}{305}\)
1) \(A=\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)
\(A=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(A=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+..+\frac{1}{59}-\frac{1}{61}\right)\)
tiếp theo bạn tính kết quả trong ngoặc rồi nhân với 2 là ra kết quả của phần 1
phần 2 tách 3^2 = 3.3 sau đó lấy thừa số chung là 3,tiếp theo làm như phần 1 là ra kết quả
\(\frac{5}{5.7}+\frac{5}{7.9}+...+\frac{5}{59.61}\)
\(=\frac{5}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=\frac{5}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\frac{5}{2}\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{5}{2}.\frac{56}{305}=\frac{28}{61}\)
\(a,\left(10\frac{2}{9}.2\frac{3}{5}\right)-6\frac{2}{9}=\frac{1196}{45}-\frac{56}{9}=\frac{1196}{45}-\frac{280}{45}=\frac{916}{45}\)
\(b,\frac{6}{7}+\frac{1}{7}.\frac{2}{7}+\frac{1}{7}.\frac{5}{7}=\frac{1}{7}\left(6+\frac{2}{7}+\frac{5}{7}\right)=\frac{1}{7}.7=1\)
\(c,3.136.8+4.14.6-14.150=3264+336-2100=1500\)
\(d,\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(e,\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}=\frac{1}{3}-\frac{1}{39}=\frac{4}{13}\)
M = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
M = \(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+\frac{2}{9}-\frac{2}{11}\)
M = \(\frac{2}{1}-\frac{2}{11}\)
M = \(\frac{20}{11}\)
\(=\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{59.61}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{59}-\frac{1}{61}\right)\)
=\(2.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\left(\frac{36}{505}\right)\)
\(=\frac{72}{505}\)
TK nha !!
Ta có : \(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+....+\frac{4}{59.61}\)
\(=2\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+.....+\frac{2}{59.61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{59}-\frac{1}{61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\frac{56}{305}=\frac{112}{305}\)
a)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+2\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x\left(x+2\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+2}=\frac{2}{9}:2\)
\(\frac{1}{x+2}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+2}=\frac{1}{18}\)
=>x+2=18
=>x=16
b tương tự nhân nó với 1/2
ko co de]
\(\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{59.61}\)
\(=\)\(\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{59.61}\right)\)
\(=\)\(\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\)\(\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\)\(\frac{3}{2}.\frac{56}{305}\)
\(=\)\(\frac{84}{305}\)
Chúc bạn học tốt ~