rút gọn
a, \(\sqrt{\frac{2a^2b^4}{50}}\)
b,\(\frac{\sqrt{2ab^2}}{\sqrt{162}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{2a^2b^4}{50}}=\sqrt{\dfrac{a^2b^4}{25}}=\dfrac{b^2\left|a\right|}{5}\)
\(\dfrac{\sqrt{2ab^2}}{\sqrt{162}}=\sqrt{\dfrac{ab^2}{81}}=\dfrac{\sqrt{a}\left|b\right|}{9}\)
a) \(\sqrt{\frac{2a^2b^4}{50}}=\sqrt{\frac{a^2b^4}{25}}=\frac{\sqrt{a^2b^4}}{\sqrt{25}}=\frac{ab^2}{5}\)
b) \(\frac{\sqrt{2ab^2}}{\sqrt{162}}=\sqrt{\frac{2ab^2}{162}}=\sqrt{\frac{ab^2}{81}}=\frac{\sqrt{ab^2}}{\sqrt{81}}=\frac{b\sqrt{a}}{9}\)
bài này mình cũng dò lại đề rồi mình chép đúng đấy mà không làm được nên mới nhờ giải
Đặt A=\(\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}=\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{\left(a-b\right)^2}}=\frac{a-b}{b^2}.\left|\frac{ab^2}{a-b}\right|\)
Với a<b thì : A=\(\frac{a-b}{b^2}.\frac{ab^2}{-\left(a-b\right)}=-a\)
Với a>b thì : A=\(\frac{a-b}{b^2}.\frac{ab^2}{a-b}=a\)
\(\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}\)
\(=\frac{a-b}{b^2}\sqrt{\frac{\left(ab^2\right)^2}{\left(a-b\right)^2}}\)
\(=\frac{a-b}{b^2}\cdot\frac{\sqrt{\left(ab^2\right)^2}}{\sqrt{\left(a-b\right)^2}}\)
\(=\frac{a-b}{b^2}\cdot\frac{\left|a\right|b^2}{\left|a-b\right|}\)
+) Nếu a>b => \(\frac{a-b}{b^2}\cdot\frac{ab^2}{a-b}=a\)
+) Nếu a<b => \(\frac{a-b}{b^2}\cdot\frac{ab^2}{b-a}=-a\)
Hoktot